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Abstract—Unlimited sampling provides an acquisition scheme
for high dynamic range signals by folding the signal into the
dynamic range of the analog-to-digital converter (ADC) using
modulo non-linearity prior to sampling to prevent saturation.
Recently, a generalized scheme called modulo hysteresis was
introduced to account for hardware non-idealities. The encoding
operator, however, does not guarantee that the output signal is
within the dynamic range of the ADC. To resolve this, we propose
a modified modulo hysteresis operator and show identifiability of
bandlimited signals from modulo hysteresis samples. We propose
a recovery algorithm based on orthogonal matching pursuit and
validate our theoretical results through numerical experiments.

Index Terms—Unlimited sampling, generalized modulo opera-
tor, Shannon sampling theory, orthogonal matching pursuit.

I. INTRODUCTION

The well-known Shannon sampling theorem [1] allows for
the recovery of a bandlimited function g from discrete samples
{g(nT) | n ∈ Z} with sufficiently small sampling rate
T > 0, namely if sampled at or above the Nyquist rate,
which is implemented in hardware by analog-to-digital con-
verters (ADCs). The reconstruction formula, however, assumes
access to perfect samples and any distortion in the data leads
to artifacts in the reconstruction. One particular bottleneck in
practice is that ADCs operate at a fixed dynamic range and
an input signal exceeding the threshold leads to saturation or
clipping and, hence, we suffer a permanent information loss.

To overcome these limitations, the Unlimited Sampling
Framework (USF) was introduced in [2], [3], [4] along with
mathematically backed reconstruction algorithms, where, prior
to sampling, the input function is folded into the dynamic
range using modulo arithmetic. Since then several reconstruc-
tion approaches have been proposed, e.g. [5], [6], [7], [8],
and USF has been extended to various applications like imag-
ing [9], computerized tomography [10], [11] and radar [12].
More general encoding operators were considered in [13].

The above approaches assume an instantaneous fold when-
ever the input signal g reaches the dynamic threshold, yielding
an encoding that operates pointwise, i.e., the output at time
t is determined by g(t). As opposed to this, in [14], [15]
a generalized modulo encoder is proposed that accounts for
non-instantaneous folds due to hardware imperfections. This
yields an encoding operator MH with memory in the sense
that MHg(t) not only depends on g(t), but on g(τ) for τ ≤ t.
Because of this, MH is also called modulo hysteresis operator.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG),
project number 530863002.

Fig. 1. Illustration of generalized modulo encoder MH and modified modulo
hysteresis operator Mh,α

λ for random input g ∈ PWΩ with λ = 0.2, h = 0.1

and α = 0.3, where Mh,α
λ g ∈ [−λ, λ], but |MHg(t)| > λ for some t.

The model proposed in [14], [15], however, does not guar-
antee that the output is within the dynamic range of the ADC,
see Fig. 1 for illustration. Hence, in this work, we propose a
modified modulo hysteresis operator M h,α

λ that stays within
the given dynamic range. In Section II, we show that the
input signal g is uniquely determined by the discrete samples
{M h,α

λ g(nT) | n ∈ Z} with sufficiently small T > 0 and, in
Section III, explain how g can be recovered using orthogonal
matching pursuit (OMP). Finally, our theoretical results are
supported by numerical experiments in Section IV.

II. MODULO HYSTERESIS OPERATORS

For a function g : R → R, the ideal modulo encoder Mλ

with modulo threshold λ > 0 is pointwisely defined as in [2]
via

Mλg(t) = g(t)− 2λ
⌊g(t) + λ

2λ

⌋
for t ∈ R,

where ⌊·⌋ denotes the floor function for real numbers, and
satisfies Mλg(t) ∈ [−λ, λ] for all t ∈ R. The typical input
space is the Paley-Wiener space PWΩ of square-integrable
bandlimited functions with bandwidth Ω > 0. In this case,
[3] shows that the input function can be recovered from
output samples if the sampling rate satisfies the oversampling
condition T < 1

2Ωe , where the reconstruction is based on
iterated forward differences in time domain. A first hardware
validation of a modulo encoder is reported in [4] together with
a Fourier domain recovery approach.
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To account for non-ideal hardware implementations, in [14]
a generalized modulo encoder MH with parameter triplet H =
(λ, h, α) is introduced, where the hysteresis parameter h ≥ 0
models an imperfect alignment of the reset threshold and the
post-reset value and the transient parameter α ≥ 0 models an
inexact folding transition. For a function g, the output MHg
is defined via a sequence of folding points (τi)i∈N, given by

τ1 = min
{
t > τ0

∣∣ Mλ(g(t) + λ) = 0
}
,

τi+1 = min
{
t > τi

∣∣ Mλ(g(t)− g(τi) + hsi) = 0
}

with si = sgn(g(τi)− g(τi−1)) and τ0 ∈ R. Then, for t ∈ R,

MHg(t) = g(t)− (2λ− h)
∑

i∈N
si εα(t− τi),

where ε0(t) = 1[0,∞)(t) models an instantaneous folding
transition and, for α > 0, εα(t) = t

α1[0,α)(t) + 1[α,∞)(t)
models the folding transition as a straight line with slope 1/α.

Note that the output MHg(t) depends on all folding points
τj < t and, hence, MH is not acting pointwisely. Moreover,
the above definition does not guarantee that Mλg(t) ∈ [−λ, λ]
for t ≥ τ0, as illustrated in Fig. 1. One reason for this is that
the folding points (τi)i∈N are independent of the transient α.
To account for this, we now wish to propose a modified
definition of the modulo hysteresis encoder. To this end, we
rewrite MHg by defining the function sequence (η

(α)
n )n∈N0

via

η
(α)
n+1 = η(α)n − (2λ− h) sgn(η(α)n (τn+1)) εα(· − τn+1),

where η
(α)
0 = g. With this, we then obtain

τi = inf
{
t > τi−1

∣∣ |η(0)i−1(t)| ≥ λ
}

and
MHg(t) = lim

n→∞
η(α)n (t).

The idea is now to make τi dependent on η
(α)
i−1 instead of η(0)i−1.

Definition 1 (Modified Modulo Hysteresis). Let λ > 0, h ≥ 0
and α ≥ 0. For a function g : R → R and starting point
τ0 ∈ R, we define the two sequences (κn)n∈N0

and (ζn)n∈N0

via
κn+1 = inf

{
t > κn

∣∣ |ζn(t)| ≥ λ
}

and

ζn+1 = ζn − (2λ− h) sgn(ζn(κn+1)) εα(· − κn+1),

where we set κ0 = τ0 and ζ0 = g. With this, we define the
modified modulo hysteresis operator M h,α

λ as

M h,α
λ g(t) = lim

n→∞
ζn(t) for t ∈ R.

When considering the input function space

C 0,1
λ,τ0

=
{
g ∈ C 0,1(R)

∣∣ |g(t)| < λ ∀ |t| ≥ |τ0|
}
,

where C 0,1(R) denotes the space of Lipschitz continuous
functions on R, which are differentiable almost everywhere
with essentially bounded derivative, one can show that M h,α

λ g
is well-defined for all g ∈ C 0,1

λ,τ0
and, as opposed to MHg, it

satisfies M h,α
λ g(t) ∈ [−λ, λ] for all t ∈ R and

κ0 < κn < ∞ =⇒ |M h,α
λ g(κn)| =

{
λ if α > 0,

λ− h if α = 0,

see also Fig. 1 for illustration. Due to space limitations,
we omit the proof in this paper and instead now focus on
the identifiability from discrete modulo hysteresis samples
{M h,α

λ g(kT) | k ∈ Z} with sampling rate T > 0. To this
end, we consider the space

C 1,1
λ,τ0

=
{
g ∈ C 0,1

λ,τ0

∣∣ g′ ∈ C 0,1(R)
}

and state a separation property of the folding points (κn)n∈N0
.

Lemma 1. Let α > 0 and g ∈ C 1,1
λ,τ0

with ∥g′′∥∞ ≤ 2h
α2 . Then,

for n ∈ N0 we have

M h,α
λ g(κn) · M h,α

λ g(κn+1) < 0 =⇒ κn+1 − κn ≥ α.

Proof. Consider the subsequence (κmn
)n∈N, where κm1

= κ1

and κmn+1
is the next folding point with different sign, i.e.,

κmn+1
= min

k>mn

{
κk

∣∣ sgn(ζk(κk)) ̸= sgn(ζmn
(κmn

))
}

so that M h,α
λ g(κmn) = ±λ = −M h,α

λ g(κmn+1). Now, with-
out loss of generality let M h,α

λ g(κm1
) = λ. Then, we obtain

M h,α
λ g(κm2−1) = λ and M h,α

λ g(κm2) = −λ. Additionally,
g′(κm2−1) ≥ p 2λ−h

α with p = |{κk ∈ (κm2−1−α, κm2−1)}|.
Therefore, we can estimate ζm2−1(t) for t > κm2−1 as

ζm2−1(t) ≥ ζm2−1(κm2−1) + g′(κm2−1) (t− κm2−1)

− ∥g′′∥∞
2

(t− κm2−1)
2 − (p+ 1)

2λ− h

α
(t− κm2−1)

≥ λ− h

α2
(t− κm2−1)

2 − 2λ− h

α
(t− κm2−1).

With this we can conclude that

κm2
≥ inf

{
t > κm2−1

∣∣∣ λ− h

α2
(t− κm2−1)

2

− 2λ− h

α
(t− κm2−1) = −λ

}
= κm2−1 + α.

We now assume that we have κmn
≥ κmn−1 + α for some

n ≥ 2. Again without loss of generality let M h,α
λ g(κmn) = λ.

Since κmn+1−1 ≥ κmn > κmn−1 + α we can proceed with
the same arguments as before to obtain

κmn+1 ≥ inf
{
t > κmn+1−1

∣∣∣ λ− h

α2
(t− κmn+1−1)

2

− 2λ− h

α
(t− κmn+1−1) = −λ}

= κmn+1−1 + α,

which completes the proof.

With the above condition on the second derivative on g we
can characterize the behaviour of M h,α

λ g(t) for large t > |τ0|.

Lemma 2. If g ∈ C 1,1
λ−h,τ0

with ∥g′′∥∞ ≤ 2h
α2 and 0 ≤ h < λ,

we have M h,α
λ g(t) = g(t) for all t ≥ |τ0|+ 2α.
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Algorithm 1 (OMP)
Input: Signal s ∈ CM and dictionary matrix V ∈ CM×N ,

error tolerance ε > 0

1: c(0) = 0 ∈ CN , S(0) = ∅, i = 1

2: while ∥V∗(s−Vc(i−1))∥∞ > ε do
3: j(i) = argmax1≤j≤N |[V∗(s−Vc(i−1))]j |
4: S(i) = S(i−1) ∪ {j(i)}
5: c(i) = argminc

{
∥s−Vc∥2 | supp(c) ⊆ S(i)

}
6: i = i+ 1

7: end while

Output: c(iend) ∈ CN

Proof. Let κn be the largest folding point smaller than or equal
to |τ0|. We now go through the different possible cases.

Case 1: If κn + α ≤ |τ0|, there exists k ∈ Z such that

|M h,α
λ g(|τ0|)| = |k (2λ− h) + g(|τ0|)|

≥ |k| (2λ− h)− |g(|τ0|)|
> |k| (2λ− h)− λ+ h.

As |M h,α
λ g(|τ0|)| ≤ λ, we get k = 0, which implies that

M h,α
λ g(|τ0|) = g(|τ0|) and, thus, ζn(t) = g(t) for all t ≥ |τ0|.

Inserting this into the definition of κn+1 gives

κn+1 = inf{t > |τ0| | |g(t)| ≥ λ} = ∞,

from which follows that M h,α
λ g(t) = g(t) for all t ≥ |τ0|. As

κn ≤ |τ0|, this is the only case for α = 0. So now let α > 0.
Case 2: If κn + α > |τ0|, but κn + α ≤ κn+1, we get, for

some k ∈ Z,

|M h,α
λ g(κn + α)| = |k (2λ− h) + g(κn + α)|

> |k| (2λ− h)− λ+ h

so that κn+1 = ∞ and M h,α
λ g(t) = g(t) for all t ≥ κn + α.

Since κn ≤ |τ0|, this also holds for all t ≥ |τ0|+ α.
Case 3: If κn+α > max{|τ0|, κn+1}, but κn+1+α ≤ κn+2,

we get, for some k ∈ Z,

|M h,α
λ g(κn+1 + α)| = |k (2λ− h) + g(κn+1 + α)|

> |k| (2λ− h)− λ+ h

so that κn+2 = ∞ and M h,α
λ g(t) = g(t) for all t ≥ κn+1+α.

Since κn+1 ≤ |τ0|+ α, this also holds for all t ≥ |τ0|+ 2α.
Case 4: Let κn+α > max{|τ0|, κn+1}, κn+1+α > κn+2.

As above, without loss of generality let M h,α
λ g(κn) = λ.

Lemma 1 implies that λ = M h,α
λ g(κn+1) = M h,α

λ g(κn+2)

and M h,α
λ g(κn+2 +α) ≤ ζn+2(κn+2 +α). This gives us that

M h,α
λ g(κn+2 + α) ≤ λ+ ζn+2(κn+2 + α)− ζn+2(κn)

≤ λ+ g(κn+2 + α)− g(κn)− 3(2λ− h)

< λ+ 2(λ− h)− 3(2λ− h) = −3λ+ h < −2λ

in contradiction to M h,α
λ g(t) ∈ [−λ, λ].

Algorithm 2 (SAOMP)
Input: Signal s ∈ CM and dictionary matrix V ∈ CM×N ,

error tolerance ε > 0, initial threshold ν ∈ [0, 1], pruning
threshold µ ∈ [0, 1], maximal iteration number imax ∈ N

1: c(0) = 0 ∈ CN , S(0) = ∅, δ = ν, i = 1

2: while i ≤ imax and ∥V∗(s−Vc(i−1))∥∞ > ε do
3: r(i) = V∗(s−Vc(i−1))

4: S(i) = S(i−1)∪{j ∈ {1, . . . , N} | |r(i)j | ≥ δ ∥r(i)∥∞}
5: c(i) = argminc{∥s−Vc∥2 | supp(c) ⊆ S(i)}
6: S(i) = {j ∈ {1, . . . , N} | |c(i)j | ≥ µ ∥c(i)∥∞}
7: for j ̸∈ S(i): c(i)j = 0

8: δ = δ + 1−ν
imax

, i = i+ 1

9: end while

Output: c(iend) ∈ CN

We can now derive a condition for the sampling rate T to
uniquely determine g ∈ PWΩ with bandwidth Ω > 0 from
modulo hysteresis samples. In [3, Lemma 1], it is shown that
any function g ∈ PWΩ is uniquely determined by the samples
{g(kTε) | k ∈ Z \ J} if 0 < Tε ≤ π

Ω+ε for arbitrarily small
ε > 0 and any finite set J ⊂ Z. We can apply this to show
that if T < π

Ω , g is also uniquely determined by the samples
{Ag(kT) | k ∈ Z} for a general operator A : PWΩ → L2(R)
with

Ag(t) = g(t) ∀ t ∈ R \M

for some bounded set M ⊂ R.

Lemma 3. Any g ∈ PWΩ is determined by {Ag(kT) | k ∈ Z}
if the oversampling condition T < π

Ω is met.

Proof. Since T < π
Ω , there exists ε > 0 so that T ≤ π

Ω+ε . Now
define J = M∩Z, which is finite as M ⊂ R is bounded. Since
{Ag(kT) | k ∈ Z \ J} = {g(kT) | k ∈ Z \ J} by assumption
on A, the statement follows from [3, Lemma 1].

Since the modulo hysteresis operator M h,α
λ satisfies the

above conditions on A if we restrict ourselves to functions
g ∈ PWΩ ∩C 1,1

λ−h,τ0
with ∥g′′∥∞ ≤ 2h

α2 and 0 ≤ h < λ due to
Lemma 2, we get the following identifiability result for M h,α

λ .

Corollary 1. Let 0 ≤ h < λ. Then, any g ∈ PWΩ ∩ C 1,1
λ−h,τ0

with ∥g′′∥∞ ≤ 2h
α2 is uniquely determined by the modulo

hysteresis samples {M h,α
λ g(kT) | k ∈ Z} if T < π

Ω .

III. RECONSTRUCTION VIA OMP

For our reconstruction approach we assume that we are
given 2K+1 modulo hysteresis samples of g ∈ PWΩ∩C 0,1

λ,τ0
,

{M h,α
λ g(kT) | k = −K, . . . ,K}

with sampling rate 0 < T < π
Ω , where K ∈ N is large enough

such that |g(t)| < λ for all |t| ≥ KT. Let us first consider the
folding function εα(· − κ) located at fixed −KT < κ < KT
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Fig. 2. Illustration of SAOMP and TAlg reconstruction for random g ∈ PWΩ

with Ω = 6.3 rad
s based on modulo hysteresis samples Mh,α

λ g(nT) with
λ = 0.1, h = 0.05, α = 50ms and T = 20.8ms.

and set ε(κ)α [n] = εα((n −K)T − κ) for n = 0, . . . , N with
N = 2K. Let ∆ : RN+1 → RN denote the forward difference
operator defined by ∆z[k] = z[k + 1]− z[k]. Then, there are
at most L = ⌈α

T⌉ + 1 entries, where ∆ε
(κ)
α is nonzero, so

that ∆ε
(κ)
α [n] = ∆ε

(κ̃1)
0 [n] + . . . + ∆ε

(κ̃L)
0 [n] for suitable

κ̃1, . . . , κ̃L ∈ TZ. Intuitively, one linear fold is split into at
most L instantaneous folds. Based on this observation we can
adapt the recovery approach proposed in [16].

To this end, set g[n] = g((n − K)T), for n = 0, . . . , N ,
and gλ[n] = M h,α

λ g((n − K)T). Then, there exist Lλ ∈ N,
κ1, . . . , κLλ

∈ [−K,K]T and σ1, . . . , σLλ
∈ {±1} such that

gλ[n] = g[n]− sλ[n] with sλ[n] = (2λ− h)
∑Lλ

l=1 σl ε
(κl)
α [n].

We apply ∆ to get g
λ
[n] = ∆gλ[n] for n = 0, . . . , N − 1

and, thereon, calculate its discrete Fourier transform (DFT)
ĝ
λ
[m] =

∑N−1
n=0 g

λ
[n] exp(− 2πimn

N ) for m = 0, . . . , N − 1.
Based on the above observation, the signal ŝλ can be written
as

ŝλ[m] =
∑

ℓ∈Lλ

cℓ exp
(
−i

ω0m

T
tℓ

)
with ω0 = 2π

N , Lλ ⊆ {0, . . . , N} and tℓ ∈ (TZ) ∩ [0, NT],
where |Lλ| ≤ Lλ (⌈α

T⌉ + 1). Now, the bandlimitedness of g
gives

ĝ
λ
[m] = −ŝλ[m] for m ∈ Ec

NΩ,N

with indices Ec
NΩ,N = {NΩ+1, . . . , N−NΩ−1} and effective

bandwidth NΩ = ⌈Ω(N+1)T
2π ⌉. Defining the vector s ∈ CM for

M = N − 2NΩ − 1 via sm−NΩ
= ĝ

λ
[m] for m ∈ Ec

NΩ,N ,
we can find c = (cn)

N−1
n=0 ∈ CN with cn = 0 for n ̸∈ Lλ by

solving the minimization problem

minimize ∥c∥0 subject to Vc = s, (1)

where V ∈ CM×N is a Vandermonde matrix with entries
Vm−NΩ,n+1 = e−iω0mn for m ∈ Ec

NΩ,N , n = 0, . . . , N − 1.
As explained in [16], (1) can be efficiently solved via the
orthogonal matching pursuit (OMP) algorithm [17], see Algo-
rithm 1. Applying anti-difference operator S : RN → RN+1,
defined by Sz[k] =

∑
j<k z[j], and subtracting Sc from

gλ = (gλ[n])
N
n=0 finally recovers the samples g = (g[n])Nn=0.
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Fig. 3. Success of SAOMP reconstruction for Mh,α
λ g(nT) with λ = 0.1,

T = 20.8ms and different values for α and h showing how often the MSE
is larger than 0.001 for 50 random functions g ∈ PWΩ with Ω = 6.3 rad

s .

In [11], a recovery guarantee for solving (1) using OMP is
shown if the index of the maximal nonzero entry of c ∈ CN

satisfies max{n | cn ̸= 0} ≤ M − 1. By means of Lemma 2
we know that this is satisfied if g ∈ C 1,1

λ−h,τ0
with ∥g′′∥∞ ≤ 2h

α2

and ⌈
|τ0|+ 2α

T

⌉
+K ≤ N − 2NΩ − 2.

To accelerate the recovery, we replace OMP by the so-called
stagewise arithmetic orthogonal matching pursuit (SAOMP)
algorithm proposed in [18]. It has additional parameters ν to
find multiple folding points in one iteration and µ to remove
incorrectly selected ones, see Algorithm 2. Note that SAOMP
agrees with OMP when choosing ν = 1, µ = 0 and imax = N .

IV. NUMERICAL EXPERIMENTS

In our numerical experiments we randomly select a function
g ∈ PWΩ with Ω = 6.3 and approximate its modulo hysteresis
output M h,α

λ g numerically. Thereon, we reconstruct g from
its samples M h,α

λ g(nT) using our SAOMP approach and
compare our results with the thresholding algorithm (TAlg)
proposed in [14]. One example is shown in Fig. 2, where we
choose λ = 0.1, h = 0.05, α = 0.05 and T = 0.0208.

While recovery with TAlg performs better for α ≪ 1
very close to zero, TAlg fails for larger α, whereas SAOMP
still recovers, see Fig. 2. For a more detailed analysis, we
investigate the influence of α and h on the reconstruction
success of our SAOMP approach. To this end, we set λ = 0.1
and vary α between 0 and 0.07 and h between 0 and 0.1. We
then calculate the mean squared error (MSE) for the SAOMP
reconstructions of 50 randomly chosen functions. The results
are depicted in Fig. 3, where the colors indicate for how many
functions the MSE of SAOMP is larger than 0.001.

We observe that SAOMP gives satisfactory reconstructions
for a large range of parameters. However, our approach shows
instabilities for a large number of folds, in particular if α
is much larger than T. In this case, a modified dictionary
matrix V can reduce the number of non-zero elements in the
coefficient vector c and allows for better reconstruction results.
This approach, however, is beyond the scope of this paper and
calls for more in-depth research in the future.
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