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Abstract. The Radon cumulative distribution transform (R-CDT), is an easy-to-compute feature extractor
that facilitates image classification tasks especially in the small data regime. It is closely related
to the sliced Wasserstein distance and provably guaranties the linear separability of image classes
that emerge from translations or scalings. In many real-world applications, like the recognition of
watermarks in filigranology, however, the data is subject to general affine transformations originat-
ing from the measurement process. To overcome this issue, we recently introduced the so-called
max-normalized R-CDT that only requires elementary operations and guaranties the separability
under arbitrary affine transformations. The aim of this paper is to continue our study of the max-
normalized R-CDT especially with respect to its robustness against non-affine image deformations.
Our sensitivity analysis shows that its separability properties are stable provided the Wasserstein-
infinity distance between the samples can be controlled. Since the Wasserstein-infinity distance only
allows small local image deformations, we moreover introduce a mean-normalized version of the
R-CDT. In this case, robustness relates to the Wasserstein-2 distance and also covers image defor-
mations caused by impulsive noise for instance. Our theoretical results are supported by numerical
experiments showing the effectiveness of our novel feature extractors as well as their robustness
against local non-affine deformations and impulsive noise.
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1. Introduction. Automatic pattern recognition and data classification play a crucial role
in various scientific disciplines and applications, like medical imaging, biometrics, computer
vision or document analysis, to name just a few. As of today, end-to-end deep neural networks
provide the state of the art if sufficient training data is available. In the small data regime,
however, or, if performance guarantees are important, hand-crafted feature extractors and clas-
sifiers are still the first choice. Ideally, the feature representation is designed to transform the
different classes to linearly separable subsets. This can, for instance, be achieved by applying
the Radon cumulative distribution transform (R-CDT) introduced in [15], which is based on
one-dimensional optimal transport maps, also called cumulative distribution transform [21, 1],
that are generalized to two-dimensional data by applying the Radon transform [25, 14], known
from computerized tomography [26, 19]. This approach shows great potential in many applica-
tions [16, 27, 2, 11, 30] and is closely related to the sliced Wasserstein distance [8, 28, 17, 20, 22].
A similar approach for data on the sphere is studied in [23, 24], for multi-dimensional optimal
transport maps in [18, 9], and for optimal Gromov–Wasserstein transport maps in [5, 6].

∗Preliminary and exploratory ideas have been presented in our conference paper [3].
†Center for Industrial Mathematics, University of Bremen, Germany & Department of Electrical and Electronic

Engineering, Imperial College London, UK (research@mbeckmann.de).
‡Institut für Mathematik, Technische Universität Berlin, Germany (beinert@math.tu-berlin.de).
§Institut für Mathematik, Technische Universität Berlin, Germany (bresch@math.tu-berlin.de).

1

mailto:research@mbeckmann.de
mailto:beinert@math.tu-berlin.de
mailto:bresch@math.tu-berlin.de


2 M. BECKMANN, R. BEINERT AND J. BRESCH

In our recent work [3], we introduced a novel normalization of the R-CDT, we referred
to as max-normalized R-CDT (mNR-CDT), to enhance linear separability in the context of
affine transformations. This was inspired by the special needs for applying pattern recognition
techniques in filigranology—the study of watermarks. These play a central role in provenance
research like dating of historical manuscripts, scribe identification and paper mill attribution.
For automatic classification, the main issues are the enormous number of classes with only few
members per class, see WZIS1, as well as the uncertainty with respect to the position, size,
orientation and slight distortion of the watermark in the digitized image. A first end-to-end
processing pipeline for thermograms of watermarks including an R-CDT-based classification
is proposed in [13], where classification invariance with respect to translation and dilation
of the watermark is achieved, but other affine transformations are not included. In contrast
to this, our mNR-CDT ensures the linear separability of affinely transformed classes without
any restrictions on the affine transformations, as theoretically shown in [3, Theorem 1] and
numerically validated by proof-of-concept experiments in [3, § 4].

In this work, we go one step further and analyse the linear separability in mNR-CDT space
when allowing for small perturbations measured in Wasserstein-∞ space in addition to affine
transformations. Recall that our definition of the mNR-CDT assumes a compact support of
the considered measure. To weaken this assumption, we introduce a new normalization of the
R-CDT, which we call mean-normalized R-CDT (aNR-CDT). We study the linear separability
in aNR-CDT space for measure classes constructed by affinely transforming distinguishable
template measures. We observe that, in contrast to mNR-CDT, our new normalization step
poses restrictions on the affine transformations in order to guarantee separability. However,
when considering perturbations of the templates, our new normalization allows for distortions
measured in Wasserstein-2 distance instead of the more restrictive Wasserstein-∞ metric.

This manuscript is organized as follows. In Section 2, we introduce basic concepts and
fix our notation. Section 3 is devoted to the R-CDT for bivariate measures, where we start
with explaining the CDT for probability measures on R and, then, extend it to the R-CDT
for probability measures on R2 by means of the Radon transform. In Section 4 we first recall
our definition of the normalized R-CDT from [3] and show elementary properties. The mNR-
CDT is explained in Section 4.1, where we also recall the linear separability result from [3]
and extend it by considering perturbations in Wasserstein-∞ space. Thereon, our novel aNR-
CDT is introduced in Section 4.2 and we show linear separability in aNR-CDT space under
affine transformations and, additionally, perturbations in Wasserstein-2 space. Our theoretical
findings are illustrated by numerical experiments in Section 5, showing the effectiveness of our
approach. Section 6 concludes with a discussion of our results and future research direction.

2. Preliminaries. Throughout the paper, we restrict our attention to functions and mea-
sures on the Euclidean space (Rd, ∥·∥) and the infinite cylinder R × S1 with S1 := {x ∈ R2 |
∥x∥ = 1}. Compact subsets of these are indicated using the symbol ⊂⊂. For domain X,
we denote the Lebesgue spaces by Lp(X); the space of continuous, bounded functions by
Cb(X); the space of continuous functions vanishing at infinity by C0(X); and the space of
finite, signed, regular (Borel) measures by M(X). Recall that M(X) is the continuous dual
of C0(X). For µ ∈ M(X), its support supp(µ) is the minimal closed subset Y ⊂ X such that
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µ(X \ Y ) = 0. For µ ∈ M(Rd), the dimension of the affine hull of supp(µ) is denoted by
dim(µ), and the diameter is given by diam(µ) := supx,y∈supp(µ)∥x− y∥.

For two domains X and Y , the push-forward of a Borel probability measure µ ∈ P(X)
via a mapping T : X → Y is defined by T#µ := µ ◦ T−1. To compare two measures, we use
the so-called Wasserstein or Kantorovich–Rubinstein metric, which is defined on spaces of
probability measures with finite pth moment given by

Pp(Rd) :=
{
µ ∈ P(Rd)

∣∣∣ ∫
Rd

∥x∥p dx < ∞
}
, p ∈ [1,∞),

P∞(Rd) :=
{
µ ∈ P(Rd)

∣∣∣ supx∈supp(µ)∥x∥ < ∞
}
.

Moreover, we introduce the canonical projections P1(x,y) := x and P2(x,y) := y as well as
the set of transport plans

Π(µ, ν) :=
{
π ∈ P(Rd × Rd)

∣∣ (P1)#π = µ, (P2)#π = ν
}
, µ, ν ∈ P(Rd).

Then, the Wasserstein-p distance between µ, ν ∈ Pp(Rd) is defined as

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
Rd×Rd

∥x− y∥p dπ(x,y)
) 1

p
, p ∈ [1,∞)(2.1a)

W∞(µ, ν) := inf
π∈Π(µ,ν)

sup
(x,y)∈supp(π)

∥x− y∥.(2.1b)

The Wasserstein-p space (Pp(Rd),Wp) is a metric space, and the infima in (2.1) are attained
by an optimal transport plan π ∈ Π(µ, ν); see [12, Prop. 1 & 2].

3. Radon Cumulative Distribution Transform. Following the approach in [21], for a prob-
ability measure µ ∈ P(R), we consider its cumulative distribution function Fµ : R → [0, 1]
given by

Fµ(t) = µ((−∞, t]), t ∈ R,

and define the cumulative distribution transform µ̂ : R → R, in short CDT, via

µ̂ = F [−1]
µ ◦ Fρ

with the generalized inverse, known as quantile function,

F [−1]
µ (t) = inf{s ∈ R | Fµ(s) > t}, t ∈ R

and a reference ρ ∈ P2(R) that does not give mass to atoms, e.g., ρ = χ[0,1]λR, where λR
denotes the standard Lebesgue measure on R. Note that, if µ ∈ P2(R) has finite second
moment, we have

µ̂ = argmin
T#ρ=µ

∫
R
|s− T (s)|2 dρ(s),
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i.e., µ̂ is the unique map T : R → R transporting ρ to µ while minimizing the cost, cf. [29].
Moreover, µ̂ is square integrable with respect to ρ, i.e., µ̂ ∈ L2

ρ(R), and, for µ, ν ∈ P2(R), we
have

∥µ̂− ν̂∥ρ :=
(∫

R
|µ(t)− ν(t)|2 dρ(t)

) 1
2
= W2(µ, ν).

To deal with a probability measure µ ∈ P(R2), we adapt the approach in [15] and apply
the so-called Radon transform to obtain a family of probability measures on R. For a bivariate
function f ∈ L1(R2), its Radon transform R[f ] : R× S1 → R is defined as the line integral

R[f ](t,θ) :=

∫
ℓt,θ

f(s) ds, (t,θ) ∈ R× S1,

where ds denotes the arc length element of the straight line ℓt,θ with signed distance t ∈ R to
the origin and normal direction θ ∈ S1 := {x ∈ R2 | ∥x∥ = 1}, i.e.,

ℓt,θ := {tθ + τθ⊥ | τ ∈ R} = S−1
θ (t) ⊂ R2

with slicing operator Sθ : R2 → R given by

Sθ(x) := ⟨x,θ⟩, x ∈ R2.

This defines the Radon operator R : L1(R2) → L1(R × S1) and, for fixed θ ∈ S1, we set
Rθ := R(·,θ), which is referred to as the restricted Radon operator Rθ : L

1(R2) → L1(R). It
is well known that R preserves mass, cf. [19], in the sense that, for any f ∈ L1(R2), we have

(3.1)

∫
R
Rθ[f ](t) dt =

∫
R2

f(x) dx,

∫
S1

∫
R
R[f ](t,θ) dt duS1(θ) =

∫
R2

f(x) dx,

where uS1 =
σS1
2π with surface measure σS1 on S1. The adjoint R∗ : L∞(R× S1) → L∞(R2) of

Radon operator R : L1(R2) → L1(R× S1), called back projection operator, is given by

R∗[g](x) :=

∫
S1
g(Sθ(x),θ) dσS1(θ), x ∈ R2,

and, for fixed θ ∈ S1, the adjoint R∗
θ : L

∞(R) → L∞(R2) of the restricted Radon operator
Rθ : L

1(R2) → L1(R) is given by

R∗
θ[h](x) = h(Sθ(x)), x ∈ R2.

Furthermore, R∗ : Cb(R×S1) → Cb(R2) and R∗
θ : Cb(R) → Cb(R2). This allows us to translate

the concept of the Radon transform to signed, regular, finite measures µ ∈ M(R2). For a fixed
direction θ ∈ S1, we generalize the restricted Radon transform Rθ to measures by setting

Rθ : M(R2) → M(R), µ 7→ (Sθ)#µ = µ ◦ S−1
θ ,
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which corresponds to the integration along the lines ℓt,θ. As for functions in (3.1), we have

Rθ[µ](R) = µ(R2) ∀θ ∈ S1,

thus, mass is preserved by Rθ. In measure theory, Rθ can be considered as a disintegration
family and, heuristically, we generalize the Radon transform by integrating Rθ along θ ∈ S1.
Therefore, we define the Radon transform R : M(R2) → M(R× S1) via

R[µ] := I#[µ× uS1 ]

with glueing operator I : R2 × S1 → R× S1 given by

I(x,θ) := (Sθ(x),θ), (x,θ) ∈ R2 × S1.

In [3, Proposition 1] we have shown that, for µ ∈ M(R2), R[µ] can indeed be disintegrated
into the familyRθ[µ] with respect to the uniform measure uS1 =

σS1
2π , i.e., for all g ∈ C0(R×S1),

we have

⟨R[µ], g⟩ =
∫
S1
⟨Rθ[µ], g(·,θ)⟩ duS1(θ).

Moreover, in [3, Proposition 2] we have proven that the measure-valued transforms R and Rθ

are the adjoints of the back projection operators R∗ and R∗
θ from above. More precisely, the

Radon transform of µ ∈ M(R2) satisfies

(3.2) ⟨R[µ], g⟩ = ⟨µ,R∗[g]⟩ ∀ g ∈ L∞(R× S1)

and

⟨Rθ[µ], h⟩ = ⟨µ,R∗
θ[h]⟩ ∀h ∈ L∞(R) ∀θ ∈ S1.

This observation suggests that the Radon transform for measures can equivalently be defined
through duality. However, the dual space of M(R) is C0(R), whereas h ∈ C0(R) \ {0} does
not imply that R∗

θ[h] ∈ C0(R) for θ ∈ S1. But if h ∈ C0(R× S1), we have R∗[h] ∈ C0(R2).

Proposition 3.1. Let h ∈ C0(R× S1). Then, we have R∗[h] ∈ C0(R2).

Proof. Let (xn)n∈N ⊆ R2 such that ∥xn∥ → ∞ for n → ∞. For arbitrarily ε > 0 there
exists Mε > 0 such that |h(x,θ)| < ε

2 for all |x| ≥ Mε and θ ∈ S1. Hence, we have

|R∗[h](xn)| =
∣∣∣∣∫

S1
h(⟨xn,θ⟩,θ) duS1(θ)

∣∣∣∣ ≤ ε

2
+

∫
{|⟨xn,θ⟩|<Mε}

|h(⟨xn,θ⟩,θ)| duS1(θ).

Since h ∈ C0(R × S1), there exits for ε′ > 0 a compact set Kε′ such that |h|Kε′×S1 |≥ ε′ and
hence there exists C := max(x,θ)∈R×S1 |h(x,θ)| > 0. Combining both yields

|R∗[h](xn)| ≤
ε

2
+ C uS1({|⟨xn,θ⟩| < Mε}).
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Since

|⟨xn,θ⟩| < Mε ⇔
∣∣∣〈 xn

∥xn∥
,θ

〉∣∣∣ < Mε

∥xn∥
,

there exists N ∈ N such that uS1({|⟨xn,θ⟩| < Mε}) < ε
2C and the assertion follows.

The definition of the Radon transform for measures is compatible with the classical defini-
tion for functions in the sense that the Radon transform of an absolutely continuous measure
is again absolutely continuous. To see this, we denote the surface measure by σK and the
Lebesgue measure by λK for the different sets K ∈ {R,R2, S1,R× S1}.

Proposition 3.2. Let f ∈ L1(R2). The Radon transform satisfies

R[fλR2 ] = R[f ]σR×S1 and Rθ[fλR2 ] = Rθ[f ]λR.

Proof. We denote by ⟨·, ·⟩M the dual pairing between M and C0 and by ⟨·, ·⟩L the dual
pairing between L1 and L∞. Then, the duality relation in (3.2) gives

⟨R[fλR2 ], g⟩M = ⟨fλR2 ,R∗[g]⟩M = ⟨f,R∗[g]⟩L = ⟨R[f ], g⟩L = ⟨R[f ]σR×S1 , g⟩M

for all g ∈ C0(R× S1).
We have the following connection between the Wasserstein distance of measures and the

Wasserstein distance of the corresponding restricted Radon transforms.

Proposition 3.3. Let θ ∈ S1. Then, we have

W∞(Rθ[µ],Rθ[ν]) ≤ W∞(µ, ν) ∀µ, ν ∈ Pc(R2),

W2(Rθ[µ],Rθ[ν]) ≤ W2(µ, ν) ∀µ, ν ∈ P2(R2).

Proof. For µ, ν ∈ P2(R2), let π ∈ Π(µ, ν) realize W2(µ, ν). Since the push-forward plan
satisfies (Sθ, Sθ)#π ∈ Π(Rθ[µ],Rθ[ν]), the second inequality follows from

W 2
2 (µ, ν) =

∫
R2×R2

∥x− y∥2 dπ(x,y) ≥
∫
R2×R2

|⟨x− y,θ⟩|2 dπ(x,y)

=

∫
R×R

|t− s|2 d(Sθ, Sθ)#π(t, s) ≥ W 2
2 (Rθ[µ],Rθ[ν]).

The first inequality can be established analogously.

We are now prepared to adapt the CDT to a probability measure µ ∈ P(R2). To this end,
we first consider its Radon transform R[µ] ∈ M(R× S1), which satisfies

Rθ[µ] ∈ P(R) ∀θ ∈ S1,

and then, for each fixed θ ∈ S1, the CDT µ̂θ of the Radon projection µθ = Rθ[µ], yielding
the Radon cumulative distribution transform (R-CDT) R̂µ : R× S1 → R of µ via

R̂[µ](t,θ) = µ̂θ(t), (t,θ) ∈ R× S1.
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In this way, any probability measure µ ∈ P(R2) is mapped to its R-CDT R̂[µ] : R× S1 → R.
If µ ∈ P2(R2), then the Radon projection Rθ[µ] ∈ P2(R) has finite second moment as well
and we have R̂[µ] ∈ L2

ρ×uS1
(R× S1). Moreover, for µ, ν ∈ P2(R2), the norm distance

∥R̂[µ]− R̂[ν]∥ρ×uS1
:=

(∫
S1

∫
R
|R̂[µ](t,θ)− R̂[ν](t,θ)|2 dρ(t) duS1(θ)

) 1
2

agrees with the so-called sliced Wasserstein-2 distance [8].
Linear separability in R-CDT space. We now show that the above feature representation

via R-CDT enhances linear separability of distinct classes that are generated from template
measures by certain transformations. To be more precise, we assume that, for fixed θ0 ∈ S1,
we are given two classes Fθ0 ,Gθ0 that are generated by template measures µ0, ν0 ∈ P(R2)
via

Fθ0 =
{
µ ∈ P(R2) | ∃h ∈ H : Rθ0 [µ] = h#Rθ0 [µ0]

}
,

Gθ0 =
{
ν ∈ P(R2) | ∃h ∈ H : Rθ0 [ν] = h#Rθ0 [ν0]

}
,

where H is a convex set of increasing bijections h : R → R. Then, we will prove that the
transformed function classes in R-CDT space

F̂θ0 =
{
R̂θ0 [µ] : R → R | µ ∈ Fθ0

}
, Ĝθ0 =

{
R̂θ0 [ν] : R → R | ν ∈ Gθ0

}
are linearly separable if Rθ0Fθ0 ∩Rθ0Gθ0 = ∅, where

Rθ0Fθ0 = {Rθ0 [µ] | µ ∈ Fθ0}, Rθ0Gθ0 = {Rθ0 [ν] | ν ∈ Gθ0},

in the sense that for any two non-empty, finite subsets F0 ⊂ Fθ0 and G0 ⊂ Gθ0 there exist a
continuous linear functional Φ: L2

ρ(R) → R and a constant c ∈ R such that

Φ
(
R̂θ0 [µ]

)
< c < Φ

(
R̂θ0 [ν]

)
∀µ ∈ F0 ∀ ν ∈ G0.

Note that a slightly different version of this result has first been stated in [13, § 3.2] without
a proof and we now close this gap in the literature.

Theorem 3.4. For templates µ0, ν0 ∈ P2(R2) and θ0 ∈ S1 consider the classes

Fθ0 =
{
µ ∈ P(R2) | ∃h ∈ H : Rθ0 [µ] = h#Rθ0 [µ0]

}
,

Gθ0 =
{
ν ∈ P(R2) | ∃h ∈ H : Rθ0 [ν] = h#Rθ0 [ν0]

}
,

where H is a convex set of increasing bijections h : R → R. Then, any non-empty, finite subsets
F0 ⊂ Fθ0 and G0 ⊂ Gθ0 are linearly separable in R-CDT space if Rθ0Fθ0 ∩Rθ0Gθ0 = ∅ in the
sense that

F̂0 =
{
R̂θ0 [µ] : R → R | µ ∈ F0

}
, Ĝ0 =

{
R̂θ0 [ν] : R → R | ν ∈ G0

}
are linearly separable in L2

ρ(R).
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Table 1
Summary of common transformations for µ ∈ M(R2) with a, b > 0 and c, φ ∈ R. The unit circle is

parametrized by θ(ϑ) := (cos(ϑ), sin(ϑ))⊤. The Radon transform for the left half of S1 follows by symmetry.

transformation A y Rθ(ϑ)[µA,y], ϑ ∈ (−π
2 ,

π
2 )

translation I R2 Rθ(ϑ)[µ] ◦ (· − ⟨y,θ(ϑ)⟩)

rotation
( cos(φ) − sin(φ)
sin(φ) cos(φ)

)
0 Rθ(ϑ−φ)[µ]

reflection
( cos(φ) sin(φ)
sin(φ) − cos(φ)

)
0 Rθ(φ−ϑ)[µ]

anisotropic scaling
(
a 0
0 b

)
0 Rθ(arctan( b

a
tan(ϑ)))[µ] ◦ ([a

2 cos2(ϑ) + b2 sin2(ϑ)]−1/2·)

vertical shear
(
1 0
c 1

)
0 Rθ(arctan(c+tan(ϑ)))[µ] ◦ ([1 + c2 cos2(ϑ) + c sin(2ϑ)]−1/2·)

Proof. As µ0, ν0 ∈ P2(R2) have finite second moments, Rθ0 [µ0],Rθ0 [ν0] ∈ P2(R) have
finite second moments as well, and we get R̂θ0 [µ0], R̂θ0 [ν0] ∈ L2

ρ(R) so that, in particular,

F̂θ0 , Ĝθ0 ⊂ L2
ρ(R). We now show that F̂θ0 and Ĝθ0 are convex. To this end, let p̂1, p̂2 ∈ F̂θ0

and α ∈ [0, 1]. Then, there exist µ1, µ2 ∈ Fθ0 such that p̂1 = R̂θ0 [µ1] and p̂2 = R̂θ0 [µ2]. Set
p0 = Rθ0 [µ0], p1 = Rθ0 [µ1] and p2 = Rθ0 [µ2]. By the definition of Fθ0 there are h1, h2 ∈ H
such that pi = (hi)#p0 for i ∈ {1, 2}, where Fpi = Fp0 ◦ h−1

i so that

p̂i = F [−1]
pi ◦ Fρ = hi ◦

(
F [−1]
p0 ◦ Fρ

)
= hi ◦ p̂0.

Consequently,

αp̂1 + (1− α)p̂2 = (αh1 + (1− α)h2) ◦ p̂0 = hα ◦ R̂θ0 [µ0]

with hα = αh1 + (1 − α)h2 ∈ H as H is convex. Now, choose µα ∈ Fθ0 such that Rθ0 [µα] =
(hα)#Rθ0 [µ0], e.g., µα := (·θ0)#(hα)#Rθ0 [µ0]. As before, we then have R̂θ0 [µα] = hα◦R̂θ0 [µ0]

and, hence, we conclude that αp̂1+(1−α)p̂2 ∈ F̂θ0 so that F̂θ0 is indeed convex. Analogously,

we obtain the convexity of Ĝθ0 . Now, let F0 ⊂ Fθ0 and G0 ⊂ Gθ0 be non-empty and finite.

Then, conv(F̂0) ⊂ F̂θ0 and conv(Ĝ0) ⊂ Ĝθ0 are convex and compact. AsRθ0Fθ0∩Rθ0Gθ0 = ∅,
we also have F̂θ0 ∩ Ĝθ0 = ∅ and, in particular, conv(F̂0) ∩ conv(Ĝ0) = ∅. Therefore, by the

Hahn-Banach separation theorem conv(F̂0) and conv(Ĝ0) are linearly separable in L2
ρ(R),

which implies that also F̂0 and Ĝ0 are linearly separable in L2
ρ(R).

Remark 3.5. Note that Theorem 3.4 is similar to the result in [15]. There, however, the
authors consider certain classes of functions that can be linearly separated in R-CDT space
when considering all directions θ ∈ S1. As opposed to this, our result only needs one θ0 ∈ S1
such that the corresponding restricted Radon transforms of the classes are distinguishable.

To study an example satisfying the assumptions of Theorem 3.4, we consider affinely
transformed finite measure µ ∈ M(R2). To this end, let A ∈ GL(2), y ∈ R2 and define
µA,y ∈ M(R2) via

µA,y := (A ·+y)#µ = µ ◦ (A−1(· − y)).
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Then, in [3, Proposition 3] we have shown that, for any θ ∈ S1, the restricted Radon transform
of µA,y is given by

Rθ[µA,y] = (∥A⊤θ∥ ·+⟨y,θ⟩)#R A⊤θ

∥A⊤θ∥
[µ] = R A⊤θ

∥A⊤θ∥
[µ] ◦

(
·−⟨y,θ⟩
∥A⊤θ∥

)
.

The effect of common affine transformations on the Radon transform is given in Table 1. In
order to describe the deformation with respect to θ, we over-parametrize the unit circle S1
via θ(ϑ) := (cos(ϑ), sin(ϑ))⊤, ϑ ∈ R. We see that an affine transformation essentially causes a
translation and scaling of the transformed measure together with a non-affine mapping in θ.

Note that, if µ = fλR2 is absolutely continuous with respect to the Lebesgue measure λR2

with density function f ∈ L1(R2), we have

µA,y =
(
|det(A)|−1 f(A−1(· − y))

)
λR2

and, for any θ ∈ S1,

Rθ[µA,y] =

(
1

∥A⊤θ∥R A⊤θ

∥A⊤θ∥
[f ]

(
·−⟨y,θ⟩
∥A⊤θ∥

))
λR,

i.e., µA,y ∈ M(R2) and Rθ[µA,y] ∈ M(R) are absolutely continuous as well.

Example 3.6. The set of affine linear function H = {x 7→ ax+b | a > 0, b ∈ R} satisfies the
assumptions of Theorem 3.4 and corresponds to translation and isotropic scaling, see Table 1.

4. Normalized Radon Cumulative Distribution Transform. Inspecting Table 1 reveals
that the only affine transformations that satisfy the assumptions of Theorem 3.4 are translation
and isotropic scaling. To account for general affine transformations, in [3] we introduced a two-
step normalization scheme for the R-CDT, which we recall here for the sake of completeness.
To this end, we define the normalized R-CDT (NR-CDT) N [µ] : R × S1 → R of µ ∈ P2(R2)
via

N [µ](t,θ) :=
R̂θ[µ](t)−mean(R̂θ[µ])

std(R̂θ[µ])
, (t,θ) ∈ R× S1,

where, for g ∈ L2
ρ(R),

mean(g) =

∫
R
g(s) dρ(s), std(g) =

√∫
R
|g(s)−mean(g)|2 dρ(s).

To ensure that the NR-CDT is well defined, we restrict ourselves to measures whose
support is not contained in a straight line. More precisely, we consider the class

P∗
2 (R2) = {µ ∈ P2(R2) | dim(µ) > 1},

and show that for these measures the standard deviation of the restricted Radon transform is
bounded away from zero and cannot vanish.
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Lemma 4.1. Let µ ∈ P∗
2 (R2). Then, there exists a constant c > 0 such that

std(R̂θ[µ]) ≥ c ∀θ ∈ S1.

The proof is based on the following continuity result.

Lemma 4.2. For fixed measure µ ∈ P∗
2 (R2), the functions S1 ∋ θ 7→ mean(R̂θ[µ]) ∈ R and

S1 ∋ θ 7→ std(R̂θ[µ]) ∈ R≥0 are continuous.

Proof. We rewrite the mean as

mean(R̂θ[µ]) =

∫
R
R̂θ[µ](t) dρ(t) =

∫
R
t dRθ[µ](t) =

∫
R2

⟨x,θ⟩ dµ(x).

Since the integrand is continuous in θ and uniformly bounded by |⟨·,θ⟩| ≤ ∥·∥, the dominated
convergence theorem yields the assertion. Analogously, we have

std2(R̂θ[µ]) =

∫
R
|R̂θ[µ](t)−mean(R̂θ[µ])|2 dρ(t) =

∫
R2

|⟨x,θ⟩ −mean(R̂θ[µ])|2 dµ(x).

The integrand is again continuous in θ and uniformly bounded by

|⟨x,θ⟩ −mean(R̂θ[µ])|2 ≤ 2∥·∥2 + 2max
θ∈S1

mean2(R̂θ[µ]);

thus, the standard deviation is continuous by dominated convergence.

Proof of Lemma 4.1. Assume the contrary, this is, c = 0. Then, due to the continuity of
θ 7→ std(R̂θ[µ]), there exists a minimizing and convergent sequence in S1 whose limit θ is
attained and satisfies std(R̂θ[µ]) = 0, i.e.,∫

R2

|⟨x,θ⟩ −mean(R̂θ[µ])|2 dµ(x) = 0.

Hence, the support of µ is contained in the line
{
x ∈ R2

∣∣ ⟨x,θ⟩ = mean(R̂θ[µ])
}
in contra-

diction to µ ∈ P∗
2 (R2).

Lemma 4.1 implies the well-definedness and square-integrability of N [µ].

Proposition 4.3. Let µ ∈ P∗
2 (R2). Then, N [µ] ∈ L2

ρ×uS1
(R× S1).

Proof. For µ ∈ P∗
2 (R2) we have R̂[µ] ∈ L2

ρ×uS1
(R × S1) and, due to Lemma 4.1, there

exists a constant c > 0 such that

std(R̂θ[µ]) ≥ c ∀θ ∈ S1.

Hence,

∥N [µ]∥2ρ×uS1
≤ c−2

∫
S1

∫
R
|R̂θ[µ](t)−mean(R̂θ[µ])|2 dρ(t) duS1(θ)

≤ 4c−2 ∥R̂[µ]∥2ρ×uS1
< ∞

so that N [µ] ∈ L2
ρ×uS1

(R× S1), as stated.
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4.1. Max-normalized R-CDT. As in [3], we now consider the more restricted class

P∗
c (R2) = {µ ∈ P(R2) | supp(µ) ⊂⊂ R2 ∧ dim(µ) > 1}

and define the max-normalized R-CDT (mNR-CDT) Nm[µ] : R → R via

Nm[µ](t) := max
θ∈S1

N [µ](t,θ) for t ∈ R.

In [3, Proposition 6] we have seen that Nm[µ] ∈ L∞
ρ (R) for all µ ∈ P∗

c (R2) and we now focus
on the linear separability of classes induced by affine transformations of template measures.

Linear separability in mNR-CDT space. Let µ0 ∈ P∗
2 (R2) be a template measure and assume

that µ ∈ P2(R2) satisfies

Rθ[µ] = (aθ ·+bθ)#Rh(θ)[µ] with aθ > 0, bθ ∈ R,

where h : S1 → S1 is bijective. Then,

R̂[µ](t,θ) = aθ R̂[µ0](t, h(θ)) + bθ

so that

mean(R̂[µ](·,θ)) = aθ mean(R̂[µ0](·, h(θ))) + bθ, std(R̂[µ](·,θ)) = aθ std(R̂[µ0](·, h(θ))).

Consequently,

N [µ](t,θ) =
R̂[µ0](t, h(θ))−mean(R̂[µ0](·, h(θ)))

std(R̂[µ0](·, h(θ)))
= N [µ0](t, h(θ))

and, if µ0 ∈ P∗
c (R2),

Nm[µ](t) = max
θ∈S1

N [µ](t,θ) = max
θ∈S1

N [µ0](t, h(θ)) = Nm[µ0](t).

This observation implies linear separability in mNR-CDT space if we consider classes in P∗
c (R2)

generated by arbitrary affine-linear transforms, which has been shown in [3].

Theorem 4.4 (cf. [3, Theorem 1]). For template measures µ0, ν0 ∈ P∗
c (R2) with

Nm[µ0] ̸= Nm[ν0]

consider the classes

F =
{
µ ∈ P(R2) | ∃A ∈ GL(2), y ∈ R2 : µ = (A ·+y)#µ0

}
,

G =
{
ν ∈ P(R2) | ∃A ∈ GL(2), y ∈ R2 : ν = (A ·+y)#ν0

}
.

Then, any non-empty subsets F0 ⊆ F and G0 ⊆ G are linearly separable in mNR-CDT space.
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The proof of Theorem 4.4 shows that mNR-CDT maps F and G to one-point sets. More
precisely,

Nm[F] = {Nm[µ0]} and Nm[G] = {Nm[ν0]}.

In the next step, we consider the linear separability of two generated classes when allowing
for slight perturbations of the underlying template measures.

Linear separability under perturbations in Wasserstein space. To study the uncertainty of the
max-normalized R-CDT under perturbations with respect to the Wasserstein-∞ distance, we
first analyse how these effect the non-normalized R-CDT.

Proposition 4.5. Let µ0, µϵ ∈ P(R2) with W∞(µ0, µϵ) ≤ ϵ. Then

∥R̂θ[µ0]− R̂θ[µϵ]∥∞ ≤ ϵ.

Proof. For any measure ν ∈ P(R), the cumulative distribution and the quantile function
fulfil

t ≤ Fν

(
F [−1]
ν (t)

)
∀t ∈ (0, 1) and F [−1]

ν

(
Fν(s)

)
≤ s ∀s ∈ R.

Exploiting W∞(Rθ[µ0],Rθ[µϵ]) ≤ W∞(µ0, µϵ) ≤ ϵ due to Proposition 3.3, and utilizing any
W∞ optimal plan πθ ∈ Π(Rθ[µ0],Rθ[µϵ]), we observe

FRθ [µ0](s) = πθ((−∞, s]× R) = πθ((−∞, s]× (−∞, s+ ϵ])

≤ πθ(R× (−∞, s+ ϵ]) = FRθ [µϵ](s+ ϵ)

for all s ∈ R. Because of the monotonicity, we further have

F
[−1]
Rθ [µϵ]

(t) ≤ F
[−1]
Rθ [µϵ]

(
FRθ [µ0]

(
F

[−1]
Rθ [µ0]

(t)
))

≤ F
[−1]
Rθ [µϵ]

(
FRθ [µϵ]

(
F

[−1]
Rθ [µ0]

(t) + ϵ
))

≤ F
[−1]
Rθ [µ0]

(t) + ϵ

Interchanging the role of µ0 and µϵ, we obtain the lower bound, which yields the assertion.

To simplify the notation, for µ ∈ P1(R2), we introduce the zero-mean quantile functions

Ñθ[µ](t) := R̂θ[µ](t)−mean(R̂θ[µ]) ∀θ ∈ S1 ∀ t ∈ R,

which corresponds to the first normalization step of the normalized R-CDT. Thus, we now
transfer the estimate for R-CDT to the zero-mean quantile functions.

Lemma 4.6. Let µ0, µϵ ∈ P1(R2) with W∞(µ0, µϵ) ≤ ϵ. Then

∥Ñθ[µ0]− Ñθ[µϵ]∥∞ ≤ 2ϵ.

Proof. Due to Proposition 4.5, we have

∥Ñθ[µ0]− Ñθ[µϵ]∥∞ ≤ ∥R̂θ[µ0]− R̂θ[µϵ]∥∞ + |mean(R̂θ[µ0])−mean(R̂θ[µϵ])|

≤ ∥R̂θ[µ0]− R̂θ[µϵ]∥∞ +

∫
R
|R̂θ[µ0](t)− R̂θ[µϵ](t)| dρ(t) ≤ 2ϵ.
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For the next normalization step in mNR-CDT, we have to divide the zero-mean quantile
functions by their standard deviations

std(R̂θ[µ]) = std(Ñθ[µ]) = ∥Ñθ[µ]∥ρ.

Depending on the smallest occurring standard deviation, a perturbation of the initial measure
µ0 may cause the following variation of the max-normalized R-CDT.

Proposition 4.7. Let µ0 ∈ P∗
c (R2) and µϵ ∈ P(R2) with W∞(µ0, µϵ) ≤ ϵ, and define c0 :=

minθ∈S1 std(R̂θ[µ0]) > 0. If ϵ < c0/2, then

∥Nm[µ0]−Nm[µϵ]∥∞ ≤ diam(µ0) + 2ϵ

c0(c0 − 2ϵ)
4ϵ.

Proof. Since W∞(µ0, µϵ) ≤ ϵ and µ0 ∈ P∗
c (R2), the measure µϵ ∈ P(R2) has compact

support and, in particular, µϵ ∈ P1(R2). Employing Lemma 4.6, we have

(4.1)
∣∣∥Ñθ[µ0]∥ρ − ∥Ñθ[µϵ]∥ρ

∣∣ ≤ ∥Ñθ[µ0]− Ñθ[µϵ]∥ρ ≤

√∫
R
4ϵ2 dρ(t) = 2ϵ.

Moreover, std(R̂θ[µϵ]) = ∥Ñθ[µϵ]∥ρ is bounded away from zero and, thus, Nm[µϵ] is well
defined. Indeed, Lemma 4.6 in combination with 2ϵ < c0 gives

∥Ñθ[µϵ]∥ρ ≥ ∥Ñθ[µ0]∥ρ − ∥Ñθ[µ0]− Ñθ[µϵ]∥ρ ≥ c0 − 2ϵ > 0.

On the basis of (4.1), the perturbation after the second normalization step is for all t ∈ R
bounded by

|Nθ[µ0](t)−Nθ[µϵ](t)| ≤
∣∣∣∣ Ñθ[µ0](t)

∥Ñθ[µ0]∥ρ
− Ñθ[µϵ](t)

∥Ñθ[µ0]∥ρ

∣∣∣∣+ ∣∣∣∣ Ñθ[µϵ](t)

∥Ñθ[µ0]∥ρ
− Ñθ[µϵ](t)

∥Ñθ[µϵ]∥ρ

∣∣∣∣
≤ 2ϵ

∥Ñθ[µ0]∥ρ
+ |Ñθ[µϵ](t)|

2ϵ

∥Ñθ[µ0]∥ρ∥Ñθ[µϵ]∥ρ

≤ 2ϵ
∥Ñθ[µϵ]∥ρ + ∥Ñθ[µϵ]∥∞

c0(c0 − 2ϵ)
≤ 2ϵ

(∥Ñθ[µ0]∥ρ + 2ϵ) + (diam(µ0) + 2ϵ)

c0(c0 − 2ϵ)

≤ diam(µ0) + 2ϵ

c0(c0 − 2ϵ)
4ϵ.

Since this upper bound is independent of θ, for fixed t ∈ R, it remains valid for the supremum
over θ ∈ S1, which yields the assertion.

An affine transformation only causes a non-linear deformation of the normalized R-CDT
in the argument θ; therefore the estimate in Proposition 4.7 can be immediately generalized
to small perturbations of the initial measure followed by an affine transformation.

Corollary 4.8. Let µ0 ∈ P∗
c (R2) and µϵ ∈ P(R2) with W∞(µ0, µϵ) ≤ ϵ, and define c0 :=

minθ∈S1 std(R̂θ[µ0]) > 0. For A ∈ GL(2), y ∈ R2, let µ := (A ·+y)#µϵ. If 2ϵ < c0, then

∥Nm[µ0]−Nm[µ]∥∞ ≤ diam(µ0) + 2ϵ

c0(c0 − 2ϵ)
4ϵ.
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The uniform bounds for the uncertainty of the max-normalized R-CDT can be incorpo-
rated into the separation guarantee in Theorem 4.4 to obtain linear separability even in the
cases of slight perturbations in W∞.

Theorem 4.9. For template measures µ0, ν0 ∈ P∗
c (R2) with Nm[µ0] ̸= Nm[ν0], define cµ :=

minθ∈S1 std(R̂θ[µ0]) and cν := minθ∈S1 std(R̂θ[ν0]). Let ϵ <
min{cµ,cν}

2 satisfy

4ϵ

(
diam(µ0) + 2ϵ

cµ(cµ − 2ϵ)
+

diam(ν0) + 2ϵ

cν(cν − 2ϵ)

)
< ∥Nm[µ0]−Nm[ν0]∥∞.

Consider the classes

F =
{
(A ·+y)#µ | A ∈ GL(2), y ∈ R2, µ ∈ P(R2), W∞(µ, µ0) ≤ ϵ

}
,

G =
{
(A ·+y)#ν | A ∈ GL(2), y ∈ R2, ν ∈ P(R2), W∞(ν, ν0) ≤ ϵ

}
.

Then, any non-empty subsets F0 ⊆ F and G0 ⊆ G are linearly separable in mNR-CDT space.

Proof. For µ ∈ F there exist A ∈ GL(2), y ∈ R2 and µϵ ∈ P(R2) with W∞(µϵ, µ0) ≤ ϵ
such that µ = (A ·+y)#µϵ. Consequently, Corollary 4.8 yields

∥Nm[µ0]−Nm[µ]∥∞ ≤ diam(µ0) + 2ϵ

cµ(cµ − 2ϵ)
4ϵ = Cµ,ϵ

so that NmF ⊆ BCµ,ϵ(Nm[µ0]) ⊂ L∞
ρ (R). Analogously, for ν ∈ G we obtain

∥Nm[ν0]−Nm[ν]∥∞ ≤ diam(ν0) + 2ϵ

cν(cν − 2ϵ)
4ϵ = Cν,ϵ

and NmG ⊆ BCν,ϵ(Nm[ν0]) ⊂ L∞
ρ (R). Since ∥Nm[µ0] − Nm[ν0]∥∞ > Cµ,ϵ + Cν,ϵ, the closed

balls BCµ,ϵ(Nm[µ0]) and BCν,ϵ(Nm[ν0]) are linearly separable in L∞
ρ (R). This implies the linear

separability of NmF0 and NmG0 in L∞
ρ (R) for any non-empty subsets F0 ⊆ F and G0 ⊆ G.

4.2. Mean-normalized R-CDT. To deal with a more general measure µ ∈ P∗
2 (R2) and

perturbations in W2, we define the mean-normalized R-CDT (aNR-CDT) Na[µ] : R → R via

Na[µ](t) =

∫
S1
N [µ](t,θ) duS1(θ) for t ∈ R.

Proposition 4.3 implies the well-definedness and square-integrability of Na[µ].

Lemma 4.10. Let µ ∈ P∗
2 (R2). Then, Na[µ] ∈ L2

ρ(R).
Proof. For µ ∈ P∗

2 (R2) we have N [µ] ∈ L2
ρ×uS1

(R × S1) according to Proposition 4.3.
Consequently, Jensen’s inequality gives

∥Na[µ]∥2ρ ≤
∫
R

∫
S1
|N [µ](t,θ)|2 duS1(θ) = ∥N [µ]∥2ρ×uS1

< ∞

so that Na[µ] ∈ L2
ρ(R), as stated.

We again focus on the linear separability of classes generated by template measures.
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Linear separability in aNR-CDT space. The linear separability in aNR-CDT space of classes
in P∗

2 (R2) requires more restrictions on the admissible affine-linear transforms.

Theorem 4.11. For template measures µ0, ν0 ∈ P∗
2 (R2) with

Na[µ0] ̸= Na[ν0]

consider the classes

F =
{
µ ∈ P(R2) | ∃A ∈ X , y ∈ R2 : µ = (A ·+y)#µ0

}
,

G =
{
ν ∈ P(R2) | ∃A ∈ X , y ∈ R2 : ν = (A ·+y)#ν0

}
,

where, for some c ∈ (0, 12),

X =

{
A ∈ GL(2)

∣∣∣∣ σmax(A)− σmin(A)

σmin(A)
≤ c∥Na[µ0]−Na[ν0]∥ρ

max{∥N [µ0]∥ρ×uS1
, ∥N [ν0]∥ρ×uS1

}

}
.

Then, any non-empty subsets F0 ⊆ F and G0 ⊆ G are linearly separable in aNR-CDT space.

Proof. For µ ∈ F there exist A ∈ X and y ∈ R2 with µ = (A ·+y)#µ0 implying that

N [µ](t,θ) = N [µ0](t, h(θ)) with h(x) =
A⊤x

∥A⊤x∥
, x ∈ R2 \ {0}.

Setting θ(φ) = (cos(φ), sin(φ))⊤ ∈ S1 for φ ∈ [0, 2π), the definition of Na gives, for all t ∈ R,

Na[µ](t) =

∫
S1
N [µ](t,θ) duS1(θ) =

1

2π

∫ 2π

0
N [µ0](t, h(θ(φ))) dφ.

Now, the parametrization η : [0, 2π) → S1, φ 7→ h(θ(φ)) is bijective and continuously differ-
entiable on (0, 2π) with

η̇(φ) = Dh(θ(φ))θ̇(φ) =
1

∥A⊤θ(φ)∥

(
A⊤θ̇(φ)− A⊤θ(φ)θ(φ)⊤AA⊤θ̇(φ)

∥A⊤θ(φ)∥2

)
so that

∥η̇(φ)∥2 = ∥A⊤θ(φ)∥2 ∥A⊤θ̇(φ)∥2 − |⟨A⊤θ(φ),A⊤θ̇(φ)⟩|2

∥A⊤θ(φ)∥4
.

Consequently,

Na[µ0](t) =

∫
S1
N [µ0](t,θ) duS1(θ) =

1

2π

∫ 2π

0
N [µ0](t, η(φ)) ∥η̇(φ)∥ dφ,

which implies that

Na[µ](t)−Na[µ0](t) =
1

2π

∫ 2π

0
N [µ0](t, η(φ)) (1− ∥η̇(φ)∥) dφ

=
1

2π

∫ 2π

0
N [µ0](t, η(φ)) ∥η̇(φ)∥

(
∥η̇(φ)∥−1 − 1

)
dφ
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and, hence, with cA = maxφ∈[0,2π)|1− ∥η̇(φ)∥−1| follows that

∣∣(Na[µ]−Na[µ0])(t)
∣∣ ≤ cA

2π

∫ 2π

0
|N [µ0](t, η(φ))| ∥η̇(φ)∥ dφ = cA

∫
S1
|N [µ0](t,θ)| duS1(θ).

Thereon, Hölder’s inequality gives

∣∣(Na[µ]−Na[µ0])(t)
∣∣2 ≤ c2A

(∫
S1
|N [µ0](t,θ)| duS1(θ)

)2

≤ c2A

∫
S1
|N [µ0](t,θ)|2 duS1(θ)

so that

∥Na[µ]−Na[µ0]∥ρ ≤
(

max
φ∈[0,2π)

∣∣1− ∥η̇(φ)∥−1
∣∣) ∥N [µ0]∥ρ×uS1

.

Direct calculations show that

∥A⊤θ(φ)∥2 ∥A⊤θ̇(φ)∥2 − |⟨A⊤θ(φ),A⊤θ̇(φ)⟩|2 = |det(A)|2

and, thus,

∥η̇(φ)∥ =
|det(A)|

∥A⊤θ(φ)∥2

with |det(A)| = σmin(A)σmax(A) and ∥A⊤θ(φ)∥2 ∈ [σmin(A), σmax(A)] for all φ ∈ [0, 2π).
This gives

∥η̇(φ)∥−1 ∈
[
σmin(A)

σmax(A)
,
σmax(A)

σmin(A)

]
∀φ ∈ [0, 2π),

which in turn implies

max
φ∈[0,2π)

∣∣1− ∥η̇(φ)∥−1
∣∣ ≤ σmax(A)

σmin(A)
− 1 =

σmax(A)− σmin(A)

σmin(A)

and the assumption A ∈ X guarantees that

∥Na[µ]−Na[µ0]∥ρ ≤ σmax(A)− σmin(A)

σmin(A)
∥N [µ0]∥ρ×uS1

(4.2)

≤ c∥Na[µ0]−Na[ν0]∥ρ=: r0.

Consequently, NaF ⊆ Br0(Na[µ0]) ⊂ L2
ρ(R) and, analogously, NaG ⊆ Br0(Na[ν0]) ⊂ L2

ρ(R).
Since c ∈ (0, 12), Br0(Na[µ0]) and Br0(Na[ν0]) are linearly separable in L2

ρ(R). This implies
the linear separability of NaF0 and NaG0 in L2

ρ(R) for any non-empty F0 ⊆ F and G0 ⊆ G.

In the next step, we again consider the linear separability of two generated classes when
allowing for slight perturbations of the underlying template measures.
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Linear separability under perturbations in Wasserstein space. To study the uncertainty of the
mean-normalized R-CDT under perturbations with respect to the Wasserstein-2 distance, we
again start with analysing how these effect the non-normalized R-CDT.

Proposition 4.12. Let µ0, µϵ ∈ P2(Rd) with W2(µ0, µϵ) ≤ ϵ. Then

∥R̂θ[µ0]− R̂θ[µϵ]∥ρ ≤ ϵ.

Proof. The statement follows from Proposition 3.3 via

∥R̂θ[µ0]− R̂θ[µϵ]∥ρ = W2(Rθ[µ0],Rθ[µϵ]) ≤ W2(µ0, µϵ) ≤ ϵ.

Next, we transfer the estimate for the R-CDT to the zero-mean quantile functions.

Lemma 4.13. Let µ0, µϵ ∈ P2(R2) with W2(µ0, µϵ) ≤ ϵ. Then

∥Ñθ[µ0]− Ñθ[µϵ]∥ρ ≤ 2ϵ.

Proof. Utilizing Proposition 4.12 and the Cauchy–Schwarz inequality, we obtain

∥Ñθ[µ0]− Ñθ[µϵ]∥ρ ≤ ∥R̂θ[µ0]− R̂θ[µϵ]∥ρ + |mean(R̂θ[µ0])−mean(R̂θ[µϵ])|

≤ ∥R̂θ[µ0]− R̂θ[µϵ]∥ρ +
∫
R
|R̂θ[µ0](t)− R̂θ[µϵ](t)| dρ(t)

≤ 2 ∥R̂θ[µ0]− R̂θ[µϵ]∥ρ ≤ 2ϵ.

We can now study the effect of perturbations in W2 on the mean-normalized R-CDT.

Proposition 4.14. Let µ0 ∈ P∗
2 (R2) and µϵ ∈ P2(R2) with W2(µ0, µϵ) ≤ ϵ, and define

c0 := minθ∈S1 std(R̂θµ0). If ϵ < c0/2, then

∥Na[µ0]−Na[µϵ]∥ρ ≤ 4ϵ

c0
.

Proof. Equation (4.1) remains valid under the given assumptions. Since 2ϵ < c0, the
standard deviation std(R̂θ[µϵ]) = ∥Ñθ[µϵ]∥ρ is uniformly bounded away from zero such that
µϵ ∈ P∗

2 (R2). In the view of Lemma 4.13, we obtain

∥Nθ[µ0]−Nθ[µϵ]∥ρ =

∥∥∥∥ Ñθ[µ0]

∥Ñθ[µ0]∥ρ
− Ñθ[µϵ]

∥Ñθ[µϵ]∥ρ

∥∥∥∥
ρ

≤
∥∥∥∥ Ñθ[µ0]

∥Ñθ[µ0]∥ρ
− Ñθ[µϵ]

∥Ñθ[µ0]∥ρ

∥∥∥∥
ρ

+

∥∥∥∥ Ñθ[µϵ]

∥Ñθ[µ0]∥ρ
− Ñθ[µϵ]

∥Ñθ[µϵ]∥ρ

∥∥∥∥
ρ

=
∥Ñθ[µ0]− Ñθ[µϵ]∥ρ

∥Ñθ[µ0]∥ρ
+

∣∣∥Ñθ[µϵ]∥ρ − ∥Ñθ[µ0]∥ρ
∣∣

∥Ñθ[µ0]∥ρ∥Ñθ[µϵ]∥ρ
∥Ñθ[µϵ]∥ρ

≤ 2
∥Ñθ[µ0]− Ñθ[µϵ]∥ρ

∥Ñθ[µ0]∥ρ
≤ 4ϵ

c0
.(4.3)
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Employing Jensen’s inequality, we may bound the perturbation after normalization by

∥Na[µ0]−Na[µϵ]∥2ρ =

∫
R

∣∣∣∣∫
S1
Nθ[µ0](t)−Nθ[µϵ](t) duS1(θ)

∣∣∣∣2 dρ(t) ≤
(4ϵ
c0

)2
.

The squared bounds for the uncertainty of the mean-normalized R-CDT can be incorpo-
rated into the separation guarantee in Theorem 4.11 to obtain linear separability even in the
cases of slight perturbations in W2.

Theorem 4.15. For template measures µ0, ν0 ∈ P∗
2 (R2) with Naµ0 ̸= Naν0, define cµ :=

minθ∈S1 std(R̂θ[µ0]), Cµ := ∥N [µ0]∥ρ×uS1
and cν := minθ∈S1 std(R̂θ[ν0]), Cν := ∥N [ν0]∥ρ×uS1

.

Let c ∈ (0, 12), c
′ ∈ (c, 12) and let ϵ < min{cµ, cν}/2 satisfy

ϵ <
c′ − c

4
min{cµ, cν}

∥Na[µ0]−Na[ν0]∥ρmax
{
Cµ, Cν

}
c∥Na[µ0]−Na[ν0]∥ρ+max{Cµ, Cν}

.

Consider the classes

F :=
{
(A ·+y)#µ | A ∈ X , y ∈ R2, µ ∈ P2(R2), W2(µ, µ0) ≤ ϵ

}
,

G :=
{
(A ·+y)#ν | A ∈ X , y ∈ R2, ν ∈ P2(R2), W2(ν, ν0) ≤ ϵ

}
,

where

X =

{
A ∈ GL(2)

∣∣∣∣ σmax(A)− σmin(A)

σmin(A)
≤ c

max
{
Cµ, Cν

} ∥Na[µ0]−Na[ν0]∥ρ
}

Then, any non-empty subsets F0 ⊆ F and G0 ⊆ G are linearly separable in aNR-CDT space.

Proof. For µ ∈ F, there are A ∈ X , y ∈ R2 and µϵ ∈ P2(R2) with W2(µϵ, µ0) ≤ ϵ
such that µ = (A · +y)#µϵ. Consequently, the proof of Theorem 4.11 in combination with
Proposition 4.14 gives

∥Na[µ]−Na[µ0]∥ρ ≤ ∥Na[µ]−Na[µϵ]∥ρ + ∥Na[µϵ]−Na[µ0]∥ρ

≤ σmax(A)− σmin(A)

σmin(A)
∥N [µϵ]∥ρ×uS1

+
4ϵ

cµ
.

Utilizing (4.3), we obtain

∥N [µϵ]∥ρ×uS1
≤ ∥N [µ0]∥ρ×uS1

+∥N [µϵ]−N [µ0]∥ρ×uS1

≤ ∥N [µ0]∥ρ×uS1
+
(∫

S1

∫
R
|Nθ[µϵ](t)−Nθ[µ0](t)|2 dρ(t) duS1(θ)

) 1
2

≤ ∥N [µ0]∥ρ×uS1
+
4ϵ

cµ
.

Consequently, the assumption A ∈ X and (4.2) give

∥Na[µ]−Na[µ0]∥ρ ≤ c∥Na[µ0]−Na[ν0]∥ρ+
(
c∥Na[µ0]−Na[ν0]∥ρ

max{Cµ, Cν}
+ 1

)
4ϵ

cµ



NORMALIZED RADON-CDT 19

symbol 1 symbol 2 symbol 3 symbol 4 symbol 5 symbol 6 symbol 7 symbol 8 symbol 9 symbol 10 symbol 11 symbol 12

Figure 1. Templates for academic datasets with domain [− 1√
2
, 1√

2
]2 represented by 256×256 pixels.

and the choice of ϵ > 0 guarantees that

∥Na[µ]−Na[µ0]∥ρ < c′ ∥Na[µ0]−Na[ν0]∥ρ=: r0.

Consequently, NaF ⊆ Br0(Na[µ0]) ⊂ L2
ρ(R) and, analogously, NaG ⊆ Br0(Na[ν0]) ⊂ L2

ρ(R).
Since c′ ∈ (c, 12), Br0(Na[µ0]) and Br0(Na[ν0]) are linearly separable in L2

ρ(R). This implies
the linear separability of NaF0 and NaG0 in L2

ρ(R) for any non-empty F0 ⊆ F and G0 ⊆ G.

5. Numerical experiments. In order to support our theoretical findings with numerical
evidence, we provide a series of proof-of-concept simulations, which focus on the (linear)
separability under affine transformations established in Theorem 4.4 and 4.11 and on the
influence of non-affine perturbations studied in Theorem 4.9 and 4.15. Since the original
R-CDT [15] already outperforms other state-of-the-art classifiers in the small data regime
[27], we restrict the experiments to comparisons with the R-CDT and the näıve Euclidean
approach and omit comparisons with neural network classifiers. The new mNR-CDT and

aNR-CDT methods significantly increase the classification accuracy showing their potential
as feature extractor. The methods are implemented in Julia2, and the code is publicly available
at https://github.com/DrBeckmann/NR-CDT. All experiments are performed on an off-the-
shelve MacBookPro 2020 with Intel Core i5 (4-Core CPU, 1.4 GHz) and 8 GB RAM.

5.1. Academic Datasets. For the majority of the numerical simulations, we rely on aca-
demic datasets that allow us to fully control the occurring affine and non-affine perturbations.
Starting from the synthetic symbols in Figure 1, whose domains are contained in the unit disc,
we generate datasets with up to twelve classes by (anisotropic) scaling, rotating, shearing, and
shifting the shown templates on the pixel grid using bi-quadratic interpolations. Scaling and
shearing is here independently applied twice with respect to the horizontal and vertical di-
rection. Depending on the experiment, we further apply non-affine transformations or add
impulsive noise. Finally, the gray values are normalized to represent a (absolutely continuous)
probability measure, where each pixel corresponds to a constant density on a square.

5.1.1. Classification under Affine Transformations. The first numerical example deals
with the ideal, unperturbed setting, where we aim to classify 10 affinely transformed versions
of all twelve symbols. The theory behind mNR-CDT in Theorem 4.4 predicts that every class
is transformed to a single point in mNR-CDT space. In order to observe this behaviour numer-
ically, the underlying Radon transform and CDT have to be discretized fine enough. In this
and all experiment regarding the academic datasets, we choose 850 equispaced radii in [−1, 1]
and 128 equispaced angles in [0, 2π) for the Radon transform and 64 equispaced interpolation

2The Julia Programming Language – Version 1.9.2 (https://docs.julialang.org).

https://github.com/DrBeckmann/NR-CDT
https://docs.julialang.org
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Figure 2. mNR-CDT (left) and aNR-
CDT (right) of affine classes 5 and 12.
The classes are generated using horizon-
tal/vertical scaling by a factor in [0.5, 1.25],
rotation by an angle in [0◦, 360◦], shearing
of horizontal/vertical axis by an angle in
[−45◦, 45◦], and horizontal/vertical shifting
by a pixel number in [−20, 20].

Table 2
NT classification accuracies for academic datasets with 10 samples per class and different parameter ranges

for random affine transformations. Similar to Figure 2, rotation angles are in [0◦, 360◦], pixel shifts in [−20, 20].
The best result per dataset and angle number is highlighted.

angles scaling in [0.5, 1.25], shearing in [−45◦, 45◦] scaling in [0.75, 1.25], shearing in [−35◦, 35◦] scaling in [0.75, 1.0], shearing in [−15◦, 15◦] no scaling and shearing

R-CDT mNR-CDT aNR-CDT R-CDT mNR-CDT aNR-CDT R-CDT mNR-CDT aNR-CDT R-CDT mNR-CDT aNR-CDT
∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2 ∥ · ∥∞ ∥ · ∥2

1 0.1083 0.2333 0.1750 0.3416 0.1750 0.3416 0.1166 0.2500 0.1500 0.3083 0.1500 0.3083 0.1666 0.2666 0.1916 0.3083 0.1916 0.3083 0.2000 0.2583 0.1583 0.3166 0.1583 0.3166
2 0.1083 0.2333 0.1750 0.3416 0.3000 0.3416 0.1166 0.2500 0.1666 0.3083 0.2333 0.2916 0.1666 0.2666 0.1916 0.3083 0.2166 0.3000 0.2000 0.2583 0.1500 0.3333 0.2500 0.3083
4 0.1333 0.2500 0.2166 0.5333 0.2416 0.3583 0.1583 0.2250 0.2833 0.5416 0.2500 0.3833 0.2250 0.2083 0.3500 0.5666 0.1916 0.3833 0.2166 0.2083 0.3250 0.5333 0.1833 0.3583
8 0.0916 0.2000 0.4416 0.6333 0.4333 0.4750 0.1333 0.2083 0.3916 0.6083 0.4250 0.4583 0.1750 0.2250 0.4166 0.6250 0.4333 0.5000 0.2166 0.2250 0.4583 0.6500 0.4833 0.4750
16 0.1416 0.1916 0.6333 0.8250 0.7250 0.7750 0.1583 0.2250 0.6916 0.8583 0.8333 0.8750 0.1666 0.2250 0.7916 0.9083 0.8583 0.9083 0.2500 0.2250 0.7833 0.9166 0.9250 0.9000
32 0.1500 0.1916 0.8833 0.9916 0.8416 0.8750 0.2000 0.2333 0.9083 1.0000 0.9583 0.9416 0.1750 0.2083 0.9500 1.0000 1.0000 1.0000 0.2500 0.1266 0.9500 1.0000 1.0000 1.0000
64 0.1666 0.1916 0.9500 1.0000 0.8333 0.8583 0.2000 0.2250 0.9750 1.0000 0.9583 0.9416 0.1666 0.2083 0.9750 1.0000 1.0000 1.0000 0.2416 0.2083 0.9500 1.0000 1.0000 1.0000
128 0.1666 0.1916 1.0000 1.0000 0.8500 0.8583 0.2000 0.2250 1.0000 1.0000 0.9583 0.9416 0.1666 0.2083 1.0000 1.0000 1.0000 0.9916 0.2250 0.2083 1.0000 1.0000 1.0000 1.0000
256 0.1666 0.1916 0.9666 1.0000 0.8500 0.8666 0.1916 0.2166 1.0000 1.0000 0.9583 0.9416 0.1833 0.2083 0.9750 1.0000 1.0000 0.9833 0.2166 0.2083 0.9583 0.9916 1.0000 1.0000

Eucl. 0.0833 0.0916 0.0833 0.0833 0.0833 0.0666 0.0833 0.0666

points in (0, 1) for the CDT. For illustration, Figure 2 shows the mNR-CDT for the affine
classes with respect to templates 5 and 12. The remaining numerical errors originate from
bi-quadratic interpolations underlying the affine image transformations. Figure 2 also shows
the aNR-CDT of both classes. Note that the aNR-CDT does not transform an affine class to
a single point but to a small ball around the template whose radius depends on the eigenval-
ues of the affine transformations, see Theorem 4.11. The quality of both transformations is
comparable but visually the mNR-CDT yields a larger distance between the classes.

To classify a given datum, we assign the label of the closest template in the considered
feature spaces. Henceforth, we refer to this approach as nearest template (NT) classification.
Since the quality of the aNR-CDT mainly depends of the size of the anisotropic scaling and
shearing, we repeat the experiment for different parameter ranges. Our classification results
are reported in Table 2, where we compare the NT performance of the mNR-CDT and aNR-
CDT with the R-CDT representation from [15] and the Euclidean representation as baseline.
In feature space, we use the Euclidean ∥ · ∥2 and Chebyshev ∥ · ∥∞ norm to assign the labels.
Moreover, we vary the number of equispaced angles for the underlying Radon transform. The

mNR-CDT and aNR-CDT feature representations clearly outperform the R-CDT and the
Euclidean baseline for classification under affine transformations. The results of the mNR-
CDT surpass the accuracies of the aNR-CDT especially in the presence of large anisotropic
scaling and shearing, which is covered by the developed theory. Notice that already small
numbers of Radon angles yield high accuracies. Finally, the Euclidean norm outperforms the
Chebyshev norm; for this reason, we restrict ourselves henceforth to the Euclidean norm.

5.1.2. Classification under Non-affine Deformations. The theory behind Theorem 4.9
and 4.15 guarantees the separability of affine classes in mNR-CDT and aNR-CDT space even
for imperfect affine transformations. In the next experiments, we study the robustness of the
proposed methods against non-affine deformations and additive impulsive noise. Both error
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non-affine deformation salt noise non-affine deformation & salt noise

W2(ρorg, ρdis) = 1.9860 · 10−3 W2(ρorg, ρdis) = 3.1034 · 10−3 W2(ρorg, ρdis) = 5.77112 · 10−3

Figure 3. Instances of corrupted data regarding non-affine deformations and impulsive/salt noise considered
in the robustness analysis. The accompanying vector fields illustrate the optimal Wasserstein-2 transport between
the corrupted datum ρdis and the true template ρorg.

Figure 4. Visualization of mNR-CDT
(left) and aNR-CDT (right) for classes 5
and 12 of academic dataset, each of size 10
and generated by, first, random non-affine
deformations induced by sine/cosine func-
tions with amplitudes in [2.5, 7.5] and fre-
quencies in [0.5, 2.0], and, second, random
affine transformation as in Figure 2.

Table 3
NT classification accuracies for the academic dataset with 10 samples per class and different parameter

ranges for random non-affine distortions. Additionally, random affine transformations are applied with scaling
in [0.75, 1.0], shearing in [−5◦, 5◦], rotation angles in [0◦, 360◦] and pixel shifts in [−20, 20]. The best result per
dataset and angle is highlighted.

angles no non-affine distortion freq. in [0.5, 2.0], amp. in [2.5, 7.5] freq. in [0.5, 2.0], amp. in [8.0, 13.0] freq. in [0.5, 4.0], amp. in [0.5, 2.0] freq. in [0.5, 4.0], amp. in [0.5, 7.5] freq. in [0.5, 4.0], amp. in [2.5, 7.5]

R-CDT mNR-CDT aNR-CDT R-CDT mNR-CDT aNR-CDT R-CDT mNR-CDT aNR-CDT R-CDT mNR-CDT aNR-CDT R-CDT mNR-CDT aNR-CDT R-CDT mNR-CDT aNR-CDT

1 0.2583 0.3083 0.3083 0.2250 0.2666 0.2666 0.2250 0.2500 0.2500 0.2416 0.2666 0.2666 0.2166 0.2250 0.2250 0.2000 0.2166 0.2166
2 0.2883 0.3083 0.2916 0.2250 0.2750 0.2750 0.2250 0.2416 0.2333 0.2416 0.2583 0.2500 0.2166 0.2166 0.2333 0.2000 0.2250 0.2166
4 0.1833 0.5250 0.3666 0.1750 0.4333 0.2500 0.2083 0.4000 0.2083 0.1916 0.4583 0.3166 0.1666 0.3916 0.2333 0.1750 0.3750 0.2083
8 0.2083 0.6500 0.4916 0.1583 0.6000 0.4166 0.1333 0.5583 0.4333 0.1833 0.6500 0.5166 0.1966 0.5833 0.4416 0.1916 0.5833 0.4250
16 0.2000 0.9166 0.8750 0.1583 0.8250 0.8666 0.1250 0.7083 0.7500 0.1583 0.9083 0.8833 0.1916 0.7916 0.8083 0.2083 0.7583 0.7250
32 0.2000 1.0000 1.0000 0.1666 0.9916 1.0000 0.1250 0.8083 0.9083 0.1666 1.0000 1.0000 0.1916 0.9500 0.9666 0.2000 0.9083 0.9250
64 0.1916 1.0000 1.0000 0.1666 0.9833 1.0000 0.1250 0.8000 0.9166 0.1583 1.0000 1.0000 0.1916 0.9333 0.9666 0.2000 0.9083 0.9166
128 0.1916 1.0000 1.0000 0.1666 0.9916 1.0000 0.1250 0.8166 0.9250 0.1666 1.0000 1.0000 0.1916 0.9333 0.9750 0.2000 0.9000 0.9250
256 0.1916 0.9916 1.0000 0.1666 0.9916 1.0000 0.1580 0.8416 1.0000 0.1666 1.0000 1.0000 0.1916 0.9416 0.9750 0.2000 0.9000 0.9250

Eucl. 0.0833 0.0583 0.0666 0.0750 0.0750 0.0750

sources are illustrated in Figure 3 together with optimal transport plans from the underlying
true template. Already light impulsive noise, which is referred to as salt noise, has a similar
effect on the Wasserstein-2 distance as strong non-affine perturbations. Therefore, we expect
that mNR-CDT and aNR-CDT can manage non-affine distortions better than impulsive noise.

Non-affine Deformations. To generate non-affine deformations of an (N×N)-pixel image,
we assign to the (j, k)th pixel the bi-quadratically interpolated gray value at the perturbed
location (

j + a1 sin
(2πf1

N k
)
, k + a2 cos

(2πf2
N j

))
with fixed random frequencies f1, f2 and amplitudes a1, a2. Figuratively, this deformation
yields local bendings of the template symbols; see Figure 3 (left). The datasets for the following
experiments consist of 10 non-affinely deformed samples for each of the twelve templates in
Figure 1, followed by the application of a random affine transformation. The impact on the
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ℓ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 5. Scala of exemplarily rendered salt noise of strength ℓ ∈ {1, . . . , 20} used in the experiments. The
salt noise illustrated in Figure 3 has strength ℓ = 9.

Figure 6. Visualization of mNR-CDT
and aNR-CDT for class 5 of academic
dataset of size 10, generated by, first, ran-
dom affine transformations with scaling in
[0.75, 1.0], shear in [−5◦, 5◦], rotation in
[0◦, 360◦], shift in [−20, 20] and, second,
adding salt noise of strength 9 according to
Figure 5 at 4 to 7 locations.

16 equispaced Radon angles 64 equispaced Radon angles 256 equispaced Radon angles

mNR-CDT aNR-CDT mNR-CDT aNR-CDT mNR-CDT aNR-CDT

Figure 7. Phase transition of NT classification accuracies for 3-class academic datasets with 10 samples
per class and different salt noise (vertical: component numbers, horizontal: noise strengths, cf. Figure 5). The
random affine transformations consist of rotations with angle in [0◦, 360◦] and pixel shifts in [−20, 20]. The
experiment is repeated for varying numbers of Radon angles.

mNR-CDTs and aNR-CDTs is illustrated in Figure 4. While the non-affine deformations only
have a very small impact on the aNR-CDT representation, we clearly observe within-class
variations for the mNR-CDT. For classification, we again use the NT approach and repeat
the entire experiment for different academic datasets whose amplitudes and frequencies of the
random non-affine deformations lie in varying parameter ranges. Our results are reported in
Table 3. We observe that our mNR-CDT and aNR-CDT representations clearly outperform R-
CDT and Euclidean representations. In particular, for a small amount of non-affine distortions
both—mNR-CDT and aNR-CDT—yield perfect classification for sufficiently many angles.
With increasing amount of distortions, we see that aNR-CDT performs better than mNR-
CDT, as expected by our observations based on Figure 3.

Salt Noise. In style of salt-and-pepper noise, we use the term salt noise for image distor-
tions caused by adding white discs with fixed radius to the image. Figure 5 shows a gamut
of rendered salt noise used in our experiments. The impact of salt noise to the mNR-CDT
and aNR-CDT is illustrated in Figure 6 and mainly consists in heavy disturbances at the
end points of the domain (0, 1), which also affect the mNR-CDTs and aNR-CDTs as a whole.
The 3-class academic datasets in this experiment are generated as follows: first, the template
images 1, 5, and 12 in Figure 1 are randomly affinely transformed (without anisotropic scaling
and shearing to avoid additional disturbances of aNR-CDTs); second, the obtained images are
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16 equispaced Radon angles 64 equispaced Radon angles 256 equispaced Radon angles

mNR-CDT aNR-CDT mNR-CDT aNR-CDT mNR-CDT aNR-CDT

Figure 8. Phase transition of NT classification accuracies for 3-class academic datasets with 10 samples
per class, non-affine deformations with frequencies in [0, 2] and variable amplitude ranges (horizontal), as well
as salt noise of strength 9 according to Figure 5 and variable location numbers (vertical). The random affine
transformations consist of rotations with angles in [0◦, 360◦] and pixel shifts in [−20, 20]. The experiment is
repeated for varying numbers of Radon angles.

Table 4
NN classification accuracies (mean plus/minus standard deviation) for academic datasets with all 12 sym-

bols from Figure 1 and 100 samples per class. In 2. and 4., random non-affine deformations with frequencies in
[0.5, 2.0] and amplitudes in [2.5, 7.5] are applied. Affine transformations consist of rotations in [0◦, 360◦], shifts
in [−20, 20] and, in 1. and 2., scaling in [0.5, 1.25] and shearing in [−45◦, 45◦] as well as, in 3. and 4., scaling
in [0.75, 1.0] and shearing in [−5◦, 5◦]. In 3. and 4., salt noise is of strength 9, cf. Figure 5, with random
location numbers in [4, 7]. The best result per dataset and training number is highlighted.

dataset 5 training samples 10 training samples

Euclidean R-CDT mNR-CDT aNR-CDT Euclidean R-CDT mNR-CDT aNR-CDT

1. affine 0.0915± 0.0052 0.1217± 0.0094 0.9999± 0.0001 0.9010± 0.0247 0.0958± 0.0083 0.1320± 0.0091 1.0000± 0.0000 0.9595± 0.0122
2. non-affine, affine 0.0903± 0.0081 0.1212± 0.0110 0.9899± 0.0048 0.9055± 0.0264 0.0922± 0.0080 0.1343± 0.0111 0.9962± 0.0031 0.9623± 0.0128
3. affine, salt 0.1003± 0.0072 0.1707± 0.0111 0.5669± 0.0226 0.6378± 0.0300 0.1103± 0.0085 0.2003± 0.0085 0.6542± 0.0209 0.7236± 0.0157
4. non-affine, affine, salt 0.1042± 0.0075 0.1666± 0.0132 0.5412± 0.0294 0.6325± 0.0271 0.1108± 0.0068 0.1904± 0.0080 0.6296± 0.0223 0.7149± 0.0223

corrupted by salt noise. The final datasets consist of 10 samples per class and are classified
using the NT approach. Repeating the experiment for datasets with different noise strength
and component numbers, we obtain the phase transitions in Figure 7. The aNR-CDT requires
more angles but then performs better than mNR-CDT, whose phase transition is less sharp.

Non-affine Deformations and Salt Noise. In the final academic experiment, we study the
combined impact of non-affine deformations and salt noise. Similar to before, we consider
3-class academic datasets based on the symbols 1, 5, and 12 from Figure 1. The datasets
themselves, each consisting of 10 samples per class, are generated by, first, distorting via a
non-affine deformation, second, applying an affine transformation (again without anisotropic
scaling and shearing), and third, corrupting with salt noise. For classification, we employ the
NT approach. The resulting phase transitions are reported in Figure 8, where the range of
the random amplitudes of the non-affine deformation and the number of locations corrupted
by salt noise are varied. We observe that the salt noise has more impact on the classification
success and that the area of near perfect classification is larger for aNR-CDT than mNR-CDT,
indicating more robustness against distortions.

5.1.3. Nearest Neighbour Classification. In the final experiments, regarding academic
datasets, the NT method is replaced by the nearest neighbour (NN) method to demonstrate
that the classification accuracy can be improved, especially under presence of non-affine distor-
tions and noise. The parameter regarding the discretized Radon transform and CDT remain
unchanged, i.e., we use 128 Radon angles, 850 radii, and 64 interpolation points. The gener-
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3. experiment: affine, salt 4. experiment: non-affine, affine, salt

5 training samples 10 training samples 5 training samples 10 training samples

Figure 9. Confusion maps for aNR-CDT in the 3. and 4. experiment in Table 4. True labels are vertical
and the classified labels horizontal.

Figure 10. Chinese character dataset. One member of each class is selected as template symbol and affinely
transformed to create the dataset. Here, the templates of classes 1 to 12 are shown, each of size 128×128 pixels.

ated datasets consists of 100 samples per each of the 12 classes in Figure 1. Furthermore, the
employed NN classifiers rely on up to 10 random samples per class. In Table 4, the mean NN
accuracies for different distortion settings are recorded, where each experiment is repeated 20
times with different training samples. In the ideal setting and under non-affine deformations,
rows 1 and 2, mNR-CDT yields perfect classifications, whereas aNR-CDT performs slightly
worse. The parameter ranges of the anisotropic scaling and shearing in these experiments are
relatively large, such that the decrease of the performance of aNR-CDT is expected. Under
the presence of salt noise, rows 3 and 4, aNR-CDT significantly outperforms mNR-CDT. Con-
sidering the confusion maps of these experiments in Figure 9, we notice that aNR-CDT can
clearly distinguish the shield symbols and the crosses at the top but has problems to classify
the basis (circle, square, triangle) of the symbols.

5.2. Semi-synthetic Chinese Character Dataset. To demonstrate the applicability of our
approach to multi-class problems with a large number of classes, we consider the first 1000
classes of the Chinese character dataset [7]. For each of these, we select the first representative
as template, see Figure 10 for the first 12 classes, which is then randomly scaled, rotated,
sheared and shifted to form our semi-synthetic Chinese character datasets.

To start with, we restrict ourselves to the leading 100 classes with 50 samples per class and
compare mNR-CDT and aNR-CDT with the Euclidean and R-CDT representations. To this
end, we again use the NT approach as well as the NN method with 5 or 10 training samples,
respectively. For the discretization of the Radon transform and CDT we use 128 Radon angles,
850 radii, and 64 interpolation points. The classification accuracies are reported in Table 5
(top). For both NT and NN, we see that mNR-CDT and aNR-CDT clearly outperform the
Euclidean and R-CDT approaches, which only perform at the level of random guessing. As
expected by our theory, we observe perfect NT and NN classification using mNR-CDT with
sufficiently many angles. For aNR-CDT, the performance of the NT classification is worse,
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Table 5
NT and NN classification accuracies for the Chinese character dataset, where each class consists of 50

samples, generated by random affine transformations with scaling in [0.5, 1.0], shearing in [−25◦, 25◦], rotation
angles in [0◦, 360◦] and pixel shifts in [−20, 20]. Separately for NT and NN, the best result is highlighted.

#
cl
a
ss
es method NT NN

# angles # training samples
2 4 8 16 32 64 128 5 10

1
0
0

Euclidean 0.0096 0.0202± 0.0021 0.0242± 0.0022
R-CDT 0.0160 0.0180 0.0172 0.0164 0.0168 0.0170 0.0170 0.0188± 0.0020 0.0217± 0.0021

mNR-CDT 0.0924 0.1038 0.3124 0.8422 0.9836 1.0000 1.0000 1.0000± 0.0000 1.0000± 0.0000

aNR-CDT 0.0810 0.0172 0.1860 0.4950 0.6486 0.6814 0.6852 0.8345± 0.0097 0.9139± 0.0062

1
0
0
0 mNR-CDT 0.0848 0.0620 0.2178 0.7368 0.9791 0.9975 0.9981 0.9987± 0.0001 0.9987± 0.0001

aNR-CDT 0.0629 0.0362 0.0751 0.3475 0.5554 0.6030 0.6104 0.7651± 0.0026 0.8631± 0.0018

Figure 11. Two samples of each class (zero to nine) of the LinMNIST dataset, generated by randomly
rotating, anisotropically scaling and shifting a random MNIST sample of the corresponding class. Here, rotation
angles are in [0◦, 360◦], scalings in [0.75, 1.0] and shifts in [−20, 20]. The image resolution is 128× 128 pixels.

which is also expected due to the application of rather severe scaling and shearing. However,
the classification accuracy is significantly improved by NN and we achieve nearly perfect
results with increasing number of training samples.

Since the Euclidean and R-CDT approach cannot successfully classify the first 100 classes,
we only consider our mNR-CDT and aNR-CDT representations when dealing with 1000 Chi-
nese characters. The results are shown in Table 5 (bottom). Again, mNR-CDT yields nearly
perfect results, while the performance of aNR-CDT is improved by NN with increasing num-
ber of training samples. Hence, all in all, our numerical observations reflect our theoretical
results also in the challenging case of a tremendous number of classes.

5.3. LinMNIST Dataset. For a more realistic scenario, we finally consider the LinMNIST
dataset [4] consisting of affinely transformed MNIST digits [10], cf. Figure 11. More precisely,
this dataset is generated by selecting the first 500 samples of each of the ten MNIST classes
and, thereon, applying a random affine transformation. In this way, we combine our theoret-
ically inspired setting of affinely transformed classes with the variety in real-world datasets.
To account for this, we change the NT and NN approach to k-NN classification and vary
the value of k as well as the number of training samples. Again, we compare mNR-CDT
and aNR-CDT with the Euclidean and R-CDT representations. For the discretization of the
Radon transform and CDT we use 128 Radon angles, 300 radii, and 64 interpolation points.

The classification accuracies are reported in Table 6. We observe that mNR-CDT clearly
outperforms the other approaches followed by aNR-CDT and reaches a k-NN classification ac-
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Table 6
k-NN classification accuracies (mean plus/minus standard deviation) for the LinMNIST dataset with class

size 500 generated by anisotropic scaling in [0.75, 1.0], rotation angles in [0◦, 360◦] and pixel shifts in [−20, 20].
For each number of training samples, the best result is highlighted.

# training samples k Euclidean R-CDT mNR-CDT aNR-CDT

11
1 0.1222± 0.0078 0.1279± 0.0067 0.5541± 0.0134 0.3899± 0.0140
5 0.1168± 0.0100 0.1105± 0.0037 0.5591± 0.0148 0.4005± 0.0135
11 0.1135± 0.0097 0.1053± 0.0038 0.5445± 0.0184 0.4015± 0.0131

25
1 0.1387± 0.0067 0.1434± 0.0067 0.6010± 0.0122 0.4208± 0.0098
5 0.1278± 0.0113 0.1260± 0.0060 0.6147± 0.0094 0.4402± 0.0111
11 0.1229± 0.0121 0.1156± 0.0047 0.6132± 0.0100 0.4453± 0.0107

50
1 0.1597± 0.0052 0.1619± 0.0056 0.6283± 0.0083 0.4467± 0.0076
5 0.1416± 0.0069 0.1457± 0.0047 0.6524± 0.0084 0.4722± 0.0067
11 0.1318± 0.0089 0.1336± 0.0054 0.6524± 0.0075 0.4776± 0.0089

11 training samples 25 training samples 50 training samples

mNR-CDT aNR-CDT mNR-CDT aNR-CDT mNR-CDT aNR-CDT

5-NN 11-NN 5-NN 11-NN 11-NN 11-NN

Figure 12. Confusion maps for the best mNR-CDT and aNR-CDT results per number of training samples.

curacy of 65% when using k = 11 and 50 training samples. In contrast to this, the Euclidean
and R-CDT representation perform on the level of random guessing. Inspecting the confu-
sion maps in Figure 12 reveals that both mNR-CDT and aNR-CDT nearly perfectly classify
classes 0 and 1. The 4s are better classified in aNR-CDT space. For all other numbers, the
representation in mNR-CDT space leads to better classifications.

6. Conclusion. In this paper, we continued our study of the mNR-CDT introduced in [3]
to enhance separability by analysing its robustness with respect to non-affine perturbations.
In addition, we introduced the aNR-CDT, which shows an improved numerical performance
especially in the presence of impulsive noise. In future works, we wish to design refined
approaches for handling more severe and realistic noise models, specifically for our moti-
vating pattern recognition task in filigranology. In so doing, we aim to surmount the gap
between mathematical theory and practice. In particular, our mNR-CDT and aNR-CDT fea-
ture representations are to be used in real-world applications like a fully automated watermark
recognition and classification pipeline. Moreover, we wish to improve our estimates especially
regarding the mNR-CDT as this appears to perform better than suggested by our theoretical
findings. In our proof-of-concept experiments, we relied on NN classifiers to show the superior
performance of the proposed feature extractors in comparison with the Euclidean and R-CDT
approach. As in [27], the NN classifier may be replaced by more advanced classification meth-
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ods to improve the shown results. Finally, besides classification tasks, we want to study the
impact of our feature extractors on clustering problems.
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