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Abstract. This paper proves a novel analytical inversion formula for
the so-called modulo Radon transform (MRT), which models a recently
proposed approach to one-shot high dynamic range tomography. It is
based on the solution of a Poisson problem linking the Laplacian of
the Radon transform (RT) of a function to its MRT in combination
with the classical filtered back projection formula for inverting the RT.
Discretizing the inversion formula using Fourier techniques leads to our
novel Laplacian Modulo Unfolding - Filtered Back Projection algorithm,
in short LMU-FBP, to recover a function from fully discrete MRT data.
Our theoretical findings are finally supported by numerical experiments.
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1 Introduction

Computerized tomography (CT) deals with the recovery of the interior of
scanned objects from given X-ray measurements taken at different views. By de-
sign, the detector’s dynamic range is limited leading to saturation artifacts in the
reconstruction of high-contrast objects. The goal of increasing the dynamic range
points towards the recent topic of high dynamic range (HDR) tomography. In-
spired by consumer HDR photography, typical multi-exposure approaches com-
bine several low dynamic range measurements into a single image with increased
dynamic range [6]. To avoid the drawback of manual calibration of the detec-
tor for each exposure, an automated calibration approach is proposed in [719)].
Unfortunately, multi-exposure approaches suffer from the same difficulties as
HDR photography: ghosting artifacts due to movements of the investigated ob-
ject; increased acquisition time; unknown detector’s sensor response necessary
for satisfactory image fusion. Furthermore, the mentioned approaches are solely
based on empirical experiments lacking mathematical recovery guarantees.

As opposed to this, inspired by the Unlimited Sampling (US) framework [5/4],
a recently introduced single-exposure approach based on a co-design of hardware
and algorithms allows for mathematically backed recovery strategies for HDR CT
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[32]. Here, instead of truncating measurements that exceed the dynamic range,
these are folded into the limited range of the detector via a modulo operation
implemented in hardware. Thereon, these folded measurements are unfolded
algorithmically. Mathematically, this can be modeled by the so-called modulo
Radon transform (MRT) [3], which concatenates the modulo operation with the
well-known Radon transform (RT), yielding a nonlinear reconstruction problem.
Albeit algorithmic recovery strategies exist [312], an explicit inversion formula
for the MRT is still missing. In this work, we address this point by proposing
an analytical inversion formula for the MRT, that combines the solution of a
Poisson equation to unfold the modulo operation with the well-known filtered
back projection (FBP) formula to invert the RT. The formulation of the Poisson
equation is inspired by an approach to the classical phase unwrapping problem
in [I315]. By discretizing our analytical inversion formula, we deduce the novel
LMU-FBP algorithm for recovering a target from MRT data, which operates
simultaneously on the angle and radial variable in contrast to the US-FBP algo-
rithm [3]. Moreover, our inversion formula does not require bandlimited Radon
data so that LMU-FBP does not rely on bandlimitedness as opposed to [2].
The paper starts with an overview of the MRT in §2] This is followed by
our main theoretical result: the deduction of the Poisson equation with suitable
boundary conditions in §3Jand the proof of the analytical inversion in Finally,
we present our LMU-FBP algorithm in §5| and showcase numerical experiments
with non-bandlimited test cases in §6|including a comparison with US-FBP [3].

2 Modulo Radon Transform

For f € LY(R?), we define its Radon transform (RT) Rf € L}((—m,7) x R) via
Rf(9,t) = / f(tcos(¥) — ssin(d), tsin(F) + s cos(¥)) ds.
R

Moreover, for g € L*°((—n,7) x R), we define its back projection Bg € L>°(R?)
via

Bg(z) = /j 9(9, 1 cos(V) + xa sin(9)) do.

Note that R is injective on L!(R?) and, for f € L!(R?) N C(R?) with integrable
Fourier transform Ff € L!'(R?), the inversion of R is given by the classical
filtered back projection formula

f(x) = =B (FISIF (RF) (9.5)) (2), 1)
which holds pointwise for all # € R2. The FBP formula , however, requires
exact knowledge of R f and, in particular, saturation effects due to range limita-
tions lead to severe artefacts in the reconstruction. To circumvent this, in [3] the
following modulo Radon transform is introduced, which folds Rf into a given
range interval [—A, A] with A > 0.
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Definition 1 (Modulo Radon transform). For A > 0 and f € LY(R?) the
modulo Radon transform (MRT) R f : (—m,7) x R — [=\, \] is defined as

RAf(9,1) = M (RF(9,1)),
where M* : R — [, A] is the 2A-modulo operator with M (t) .=t —2X [ L2 ].

In [3], it is shown that R* is injective on the space %} (R?) of bandlimited
integrable functions with bandwidth L for any L > 0 and on the space C.(R?) of
continuous functions with compact support, which implies the invertibility of R*
on suitable spaces. An analytical inversion formula, however, is not known so far.
In the following sections, we take steps towards closing this gap by first relating
the Laplacian of Rf to R*f and, afterwards, showing unique solvability of the
corresponding Poisson problem. This in combination with the FBP formula
then gives a new analytical inversion formula for R* under suitable assumptions.

3 Poisson Problem for the Modulo Radon Transform

Relating the Laplacian of Rf to R*f via a Poisson problem is inspired by [15]
from the context of phase unwrapping. Let f € L'(R?) such that Rf is twice
continuously differentiable on (—m, 7) X R. Furthermore, let A > 0 be the modulo
threshold. Then, the Laplacian of expifRf can be computed as

2
b b 2
Aexpignf = i§ARf - (” Rf) - (” Rf) } expignf,

el ot

and, thereon, for the Laplacian of R f follows that
A
ARf = p [cos(%Rf)Asin(%Rf) — Sin(%Rf)A cos(ng)} . (2)
Observe that Rf can be decomposed pointwise into R*f and a piecewise con-
stant residual function with values in 2)\Z, i.e.,

Rf= ’R,Af +2Xery with egyp = Z ¢lp,. (3)

ieT
Here, 7 denotes an arbitrary index set such that R? is covered by the pairwise
disjunct sets {D; };cz, and the coefficients ¢; € Z are integers. Exploiting the 27-
periodicity of the sine and cosine function in results in the Poisson equation

ARf = % {cos(gRAf)Asin(gR”\f) — sin(gRAf)Acos(gR’\f)} @

To compute Rf from given R*f, we aim to solve the Poisson equation . For
this, we restrict the domain of Rf to a bounded rectangle and impose boundary
conditions. Note that, for applications like CT, it is reasonable to assume that the
function f is compactly supported. Hence, in the following, let f € L*(R?) have
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compact support in the open unit ball B;(0) C R2 As the compact support
of f transfers to Rf, we obtain suppRf(¢,:) C (—1,1) for all ¥ € (—m,m).
Consequently, we assume f € L(B1(0)) as in [12], [I0] and extend f by zero
if needed. On the restricted Lipschitz domain 2 = (—m,7) x (—1,1), the RT
Rf : 2 — R can be represented as

R, = [ f(@)de
Lo (9),:NB1(0)

with 6(9) = (cos(d),sin(¥))*. With this, Rf satisfies homogeneous Dirich-
let boundary conditions on I'p = (—m,7) x {1} U (—m,7) x {1} C 9L,
where 0f2 denotes the boundary of (2. Furthermore, Rf is 2m-periodic with
respect to . Let Rf also be continuously differentiable with respect to
the first argument on [—m, 7] x R. Then, Rf and its first partial deriva-
tive with respect to 9 have to satisfy 27-periodic boundary conditions on
I'p = {—7} x (=1, 1) U{r} x (—1,1) C 912. Altogether, Rf has to fulfill the
mized Dirichlet-periodic boundary conditions

Rf(W,-1)=Rf(W,1)=0 for ¥ € (—m,m)

( ) =RSf ( t) fort € (—1,1) (5)
Rf(—m,t) = Rf(w t) forte(-1,1).

In total, by abbreviating the right-hand side in as
RA(f) = (3 [cos(FRY)Asin(FRf) = sin(FRf) A cos(FR*)])
and setting 2y = (-7, 7), 2 = (—1,1), we obtain the Poisson problem
ARf =RA(f) on §2
Rf(,-1)=0, Rf(-,1) =0 on {2y (6)
Rf(=m,-) = Rf(m,-); g5Rf(=m,) = FHRf(r,-) on 2.

4 Analytical Inversion of the Modulo Radon Transform

The solution of the boundary value problem @ enables the inversion of the
modulo operation. To guarantee the existence of a unique solution, we employ
certain periodic function spaces. A periodic function is defined on the torus
T2 = [, 7] x [~1,1] such that opposite points are identified with each other,
analogously to [I7, § 9.1.1]. With this, the Lebesgue space L2 %) of periodic
and square-integrable functions is defined as

per (T

L2, (T?) = {f : T? — R periodic, measurable’ Ifll2 < oo}
per

per
I, = ([ 17 as)

with norm
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while identifying functions which agree almost everywhere on T2. Let 9y and
0y denote the first weak partial derivative with respect to ¥ and ¢, respectively.
Then, the periodic Sobolev space HY_.(T?) on T? is defined as

per

HL L (T?) = {f € L2, (T?) | 0o f, O:f € L2, (T?)}

per per

with

-

2 2 2 2
Wy, = (LA + 100125 + 10125 )
1

Furthermore, we define the subspace Hp,, p(T?) that encodes homogeneous
Dirichlet boundary conditions on a part of the boundary as the closure

7H;er
H;er,D (TQ) = Cng,D (T2)

oo

.0 (T?) of periodic smooth functions vanishing in a neighborhood

of the space C
of FD

EIO<r<1V19E(—7r,7T):}

(e’ 2\ . [e’e) 2
per,p(T7) = {%0 € Gl supp ol ) € (—r,r

Employing standard arguments, the well-known Poincaré inequality can be
adapted to the setting of H} .. ,(T?).

Proposition 1 (Poincaré inequality). There exists a constant C, > 0 such
that
”u”Lf)er <y HVUHL,ger Vue Hll)er,D(Tz)'

Due to space limitations, we omit the proof. Instead, we now formulate our main
theoretical result: an analytical inversion formula for the MRT.

Theorem 1 (Inversion formula for R*). Let f € L*(B;(0)) N C(B(0)) be
compactly supported in By (0) with Ff € L1 (R?). Moreover, let Rf € C%(£2) with
2= (-mm)x(=1,1) and set
RA(f) = (% [cos(%R’\f)A sin(}R’\f) — Sin(gR/\f)A cos(%R)‘f)]) .
Then,
1 _ _

f@) = -B(F HIS|F (ATIRAN) (9,9)]) («) (7)

holds for all z € R?, where A~YRA (f) is the weak solution to @ for given R f.

For the proof of the Theorem [1} we first show that the Poisson problem (@)
admits a unique weak solution. To this end, we deduce a weak formulation
of the boundary value problem, where our calculations are inspired by [I]
§5.2, 6.5, 7.4] and [14, §6.8.2, 8.3]. Assume that f € L!(B1(0)), RA\(f) € C(2)
and Rf € C?(02). Then, Rf is a classical solution to the boundary value problem
in (6). Analogously to [12], we periodize R f with respect to ¢, since the values on
the opposing boundary parts (—m,7) x {—1} and (—m,7) x {1} agree due to the
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Dirichlet conditions in . Consequently, multiplying the Poisson equation (4

with a test function ¢ € Cgﬁr,D(Tz) and applying Green’s first identity results
in

—/ ¢Rg(f)d(z9,t)=/ Vgo~VRfd(19,t)—/ O VRS -vdo,
T2 2 o

where the integral along the boundary vanishes. To see this, we use that the
test function ¢ is periodic and vanishes in a neighborhood of I'p, as well as
the condition that the partial derivative OyR f is 2m-periodic with respect to 9.
Finally, we enlarge the set of test functions to H} . ,(T?) to obtain the desired

weak formulation: For R)(f) € L2, (T?), a function u € H} ., ,(T?) is called a

weak solution to the Poisson problem @ if

| vuw.0-vowna@. =~ [ ww.0rANG.0000  ©

T2

holds for all v € H}, ,(T?).

Lemma 1 (Weak solution). Let f € L' (B1(0)) with R)(f) € L2..(T?). Then,

the Poisson problem @ has a unique weak solution ug € Hll)er,D(Tz) satisfy-
mg . Moreover, there exists a constant C > 0 such that the stability estimate

lollgs . < CRAS),. (9)

per

holds.

Proof. We follow a standard approach based on the classical Lax-Milgram theo-
rem, see e.g. [, Chapter 5.2, 6.5 7], [I4, Chapter 8.3|. To this end, we first define

the bilinear form o : HY . 1 (T?) x H] . 5(T?) = R via
a(u,v) = Vu(d,t) - Vo(d,t) d(d,1).
T2

Due to the Poincaré inequality, Proposition [1} the mapping « is an inner product
on H} .. 5 (T?) and the Cauchy-Schwarz inequality implies the continuity of a by

la(u,v)] < [Vullys, [Vollis, < lully ol -

Furthermore, the Poincaré inequality guarantees the existence of C, > 0 such
that

1 2 1 2 . 1 1 2
o) 2 5 IVl + 5 Il 2 min {5 QC} lullZ,

per

1

ber.p(T?). Secondly, we define the linear form

This shows the coercivity of a on H

F:HL, 5(T?) — R by

Flo) = — /T (@, 1) RA () (0, 1) d(0, 1),
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Again, the Cauchy-Schwarz inequality implies the continuity of F' by

P < [RAD s, Tolls, < [RAWD Nl -
Consequently, all requirements of the Lax-Milgram theorem are satisfied, and

there exists a unique ug € H},. 5 (T?) such that

Vug - Vo d(¥,t) = alug,v) = F(v) = —/T2 vRA(f) d(9,t)

T2

is satisfied for all v € H}., (T?), i.e., up is the unique weak solution to the
Poisson problem @ Furthermore, the coercivity of o and the continuity of F

imply that
. 1 1 2 A
min § =, = ¢ [uollg: < |a(uo,uo)l = [F(uo)| < [|RA)|12 Nuollm
2203

and, thus, dividing by |lug|ly;  gives the stability estimate (9). O
Ber

Using the unique weak solution in Lemma [Ij we can now prove our main
theorem.

Proof (Theorem . In the first step, we invert the modulo operator by showing
that the equation
Rf = A" (RA(S)) (10)

holds pointwise on (2. Since Rf € C?(£2) by assumption, the function R (f) is
square-integrable. Moreover, since R*f is periodic with respect to ¥ and, after
periodization, also periodic with respect to t, R\ (f) is periodic on (2 and, thus,
RA(f) € Lger (T2). Hence, Lemma |1| implies the existence of a unique weak
solution ug == A™HRA(f)) € Hi,. ,(T?) to the Poisson problem (6). It remains
to argue that R f and ug coincide. By assumption, we have Rf € C2 . ,,(T?) and,
hence, Rf € H} . ,(T?). Furthermore, R f satisfies the Poisson equation (4) and
the boundary conditions . Following the deduction of , Rf is also a weak
solution of @ and, due to the uniqueness of the weak solution, it follows that
ug = Rf € H},, p(T?). Consequently, the continuity of Rf implies that
holds pointwise choosing the continuous representative.

In the second step, we need to invert the Radon operator. Since f € C(B1(0))
and Ff € L'(R?) by assumption, the filtered back projection formula holds
pointwise on R? and, consequently, the explicit inversion formula for the

MRT follows by combining with . a

5 Numerical Inversion of the Modulo Radon Transform

We approximate the analytical inversion formula numerically by solving the
Poisson problem @ with Fourier techniques to invert the modulo operation
and applying the well-known discrete FBP algorithm to invert the RT. This
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combines into our novel Laplacian Modulo Unfolding - Filtered Back Projection
(LMU-FBP) Algorithm [1} which we now explain in more detail.

The MRT is discretized using parallel beam geometry [I0], where, due to the
evenness of Rf, it suffices to consider the domain [0,7) x [—1,1]. For this, let
K,M € N and set N = 2K + 1. Moreover, let T > 0 be the radial sampling
rate. Then, R f is discretized by evaluating at the grid points ¥,, = may,
m e {0,...,M —1}, and ¢, = (n — K)T, n € {0,...,N — 1}, resulting in the
discrete MRT data

{pk[m,n} ::RAf(ﬁm,thmE{0,...,M—1}, ne{0,...,N—1}}.

Inspired by [15], in the first Laplacian Modulo Unfolding (LMU) stage of
Algorithm [1] we invert the modulo operator numerically by solving the Poisson
equation using discrete Fourier transforms. This is based on the observation
that, under suitable assumptions, the Laplacian of a function p can be computed
via

Ap=F~! (— -2 .Fp) .

To incorporate the boundary conditions (5), the MRT data is extended: In Step|[I]
the MRT data is extended in 9 to the interval [0,27) such that it becomes
2m-periodic. For this, the evenness property of R is employed. To ensure the
homogeneous Dirichlet boundary conditions, in Step[2] the MRT data is extended
in ¢ such that it becomes odd around N + 1. Using the discrete Fourier transform
(DFT) and its inverse (iDFT), the discrete version of the right-hand side of the
Poisson equation is computed in Step [3| Finally, in Step [ the Poisson
equation is solved numerically and the LMU solution pryu is found in Step [5
by restricting to the original index set {0,...,M — 1} x {0,...,N — 1},

In the second Filtered Back Projection (FBP) stage of Algorithm [1{ we apply
the discrete FBP algorithm to numerically invert the RT. This is based on the
approximate FBP reconstruction formula

frBP = %B(AL *Rf), (11)

where a low-pass filter Ay, satisfying FA(S) = |S|W(£) with an even win-
dow W € L*(R) supported in [—1,1] and bandwidth L > 0 is incorporated
to deal with the ill-posedness of the Radon inversion. The approximate FBP
forumla, is discretized using a standard approach, cf. [I0], involving the dis-
crete convolution in Step [6] followed by the discrete back projection in Step [7]
where an interpolation method 7J is applied to reduce the computational costs.
To this end, the discrete convolution is computed at ¢;, i € Z, for a sufficiently
large index set Z C Z. The result is the LMU-FBP reconstruction fryu in grid
points (z;,y;) € R? for index sets Z,,Z, C N.

Improvement Step. In [I5], it is proposed to apply an enhancement round-
ing step, which we adapt to our setting and include after the LMU stage in
Algorithm [1} More precisely, our improvement step is defined as

pravulm, n] — pm, ”]) (12)
2\

pLMmuU, [m,n] = prm,n] 42X round(
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Algorithm 1 LMU-FBP

Input: MRT data p*[m,n] for m € {0,...,M — 1}, n € {0,..., N — 1};
low-pass filter A7, with bandwidth L > 0; interpolation method J
Laplacian Modulo Unfolding (LMU):

1: for m € {0,...,2M — 1}, n € {0,...,N — 1} do
A -
- pr[m,n iftme{0,...,. M —1
pk[m,n]e )\[ ] . { }
p'lm—-M,N—-1—-n] ifme{M,...,2M —1}
2: for m € {0,...,2M — 1}, n € {0,...,2N + 1} do
0 ifne{0,N+1}
prm,n] « { pNm,n — 1] ifne{l,...,N}
—p*m,2N +1—n] ifne{N+2,...,2N+1}

3: p) « iDFT[—(27|])2 DFT[sin(£p)]], 52 « iDFT[—(27|-|)2 DFT[cos(Zp™)]],
PA + Hleos(5p™)p] — sin(5p™)p¢]
p  iDFT[— (27 |-|)~* DFT[p}]]
forme {0,...,M -1}, ne€ {0,...,N —1} do
pLmu[m, n] < plm,n + 1]
Filtered Back Projection (FBP):
6: forme {0,....,M —1},i€ Z do

N—-1
h(Om,t;) T > fﬁlAL(ti — tn) pLMmu[m, n)
n=0

7: for (i,j) € I, x I, do

1 M-1
fuimuli, j] < == 32 Th(Im, i cos(9m) + y; sin(Vs,))
2M m=0

Output: LMU-FBP reconstruction frau(xi,y;) for (i,j) € Z, x I,

for m € {0,...,M —1} and n € {0,...,N — 1}. This yields exact recovery of
the Radon data p[m,n] = Rf(9m,t,) if the absolute LMU reconstruction error
satisfies |pLymu[m,n] — p[m,n]| < A. Indeed, using the modulo decomposition
property with piecewise constant residual e,[m,n] = erf(Vm,t,) € Z, it is

— 2
pLmu, [m,n] = p*m,n] + 2 round(pLMU[m’n] p[;r;, nt /\E”[m’n])
=p [m,n] + 2Aep[m, n] = p[m, n].

However, if the absolute LMU reconstruction error is large, then the improvement
step in yields undesirable jumps in the recovered Radon data.

6 Numerical Experiments

We now present numerical experiments to demonstrate our inversion approach.
To this end, we use the smooth phantom [I1], depicted in Fig. a) along with
its Radon data in Fig. d), and the classical Shepp-Logan phantom [I6] in
Fig. [fb), whose Radon data is shown in Fig. [Ife). We also consider the open
source walnut dataset [§], that includes realistic uncertainties arising from the
tomography hardware. In all cases, we present reconstruction results on a grid
of 512 x 512 pixels from noisy modulo Radon projections

{p3[m,n]|me{0,.... M -1}, ne{0,...,N —1}}
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(a) 2 (b) 1.0 1.0
1
0.5 0.5
0
—1 0.0 0.0
(d) 12 0.6
1.0
0.9
0.6 0.4
0.5
0.3 0.2
0.0 0.0
—03 0.0

Fig. 1. Utilized test data for numerical experiments. (a) Smooth phantom from [II].
(b) Shepp-Logan phantom from [16]. (c) Walnut Radon data from [8]. (d) Radon data
of (a). (e¢) Radon data of (b). FBP reconstruction of (¢) serving as ground truth.

(a) 0015 () 2@ 2
3 1 1
= o o
- 0.000 © <
< - -
N .. 0 .. 0
S = =
H H
g o »
7] —0.015 © —1 n -1

Fig. 2. Numerical experiments with smooth phantom. (a) Noisy modulo Radon data
with A = 0.015 and § = 0.05 - A. (b) US-FBP on (a). (c) LMU-FBP on (a).

of noise level § > 0 in the sense that [|[p* — p}|lc < & and use the cosine
filter with window function W (S) = cos(%2) 1{—1,1)(5) and optimal bandwidth
L = M. We compare our novel LMU-FBP algorithm with the US-FBP method
from [3], which is based on Unlimited Sampling (US) [5]. Note that US-FBP
is designed for recovering bandlimited functions but it can be adapted to non-
bandlimited data by manually setting the order of forward differences. Here, we
always choose order 1 as higher orders are observed to fail in our examples.

Smooth phantom. In our first set of proof-of-concept simulations, we consider
the smooth phantom from [II] with smoothness parameter v = 2.5 so that
our assumptions of Theorem [I] are satisfied. Hence, we expect nearly perfect
reconstruction via LMU-FBP. The simulated modulo Radon data with A = 0.015
is shown in Fig. (a), compressing the dynamic range by 50 times and corrupted
by uniform noise with noise level § = 0.05 - A yielding a signal-to-noise ratio
(SNR) of 24.1 dB. We use the parameter choices M = 360 and K = 1958 leading
to N = 3917 so that T = % < %Le, which guarantees that US-FBP stably
recovers an L-bandlimited function from MRT samples. Although the smooth
phantom is not bandlimited, we see in Fig. b) that US-FBP nearly perfectly
recovers with a structural similarity index measure (SSIM) of 1.00. The same is
true for our newly proposed LMU-FBP reconstruction scheme, see Fig. c).
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(a) 0.06  (b) 1.0 (¢) 1.0
3
[++] o
9 0.00 = 0.5 < 0.5
< o o
N .. ..
& g =
a —006 @ 0.0 a 0.0

Fig. 3. Numerical experiments with Shepp-Logan phantom. (a) Noisy modulo Radon
data with A = 0.06 and v = 0.05- \. (b) US-FBP on (a). (c) LMU-FBP on (a).

0.05
a b c
() & (b) w  © 10
g &
o0 [}
“a 0.00 o 0.5 o 0.5
n o o
N .. ..
g = & 0.0 g 0.0
9] 19]
%] —0.05 1] n
(d) & 005 (e) o ()
B 1.0
% ™ 0.5 o
“ 0.00 © = 0.5
n o o
. s 0.0 s 0.0
é H HH
9] 9]
17} —0.05 17} 1]

Fig. 4. Numerical experiments with walnut dataset. (a) Noisy modulo Radon data
with A = 0.05 and v = 0.05 - \. (b) US-FBP on (a). (c) LMU-FBP on (a). (d) 2-times
downsampled noisy modulo Radon data. (e) US-FBP on (d). (f) LMU-FBP on (d).

Shepp-Logan phantom. To also deal with a non-smooth test case, we now
consider the classical Shepp-Logan phantom, which is piecewise constant and
has jump discontinuities so that our assumptions in Theorem [T] are not satisfied.
The simulated MRT data with A = 0.06 is shown in Fig. (a), compressing the
dynamic range by about 5 times and corrupted by uniform noise with 6 = 0.05- A
leading to an SNR of 24.5dB. In this case, we see that US-FBP introduces
artefacts in the reconstruction, cf. Fig. b), while our improved LMU,-FBP
method yields a nearly perfect reconstruction with SSIM of 0.96, cf. Fig. c).

Walnut data. We finally present reconstruction results for the walnut dataset
from [8], which is transformed to parallel beam geometry with M = 600 and
K = 1128. Moreover, the Radon data is normalized to the dynamical range
[0,1], see Fig.[[|(c). The corresponding FBP reconstruction is shown in Fig. [I[ff)
and serves as ground truth for comparing our reconstruction results. Simulated
modulo Radon projections with A = 0.05 are displayed in Fig. Eka), where we
added uniform noise with § = 0.05 - A to account for quantization errors leading
to an SNR of 25.3 dB. The reconstruction with US-FBP is shown in Fig. [f{b) and
with LMU-FBP in Fig. @c) Both algorithm yield a reconstruction of the walnut
that is indistinguishable from the FBP reconstruction with an SSIM of 0.99 and
0.98, respectively, while compressing the dynamic range by 10 times. The results
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for twice radially downsampled noisy MRT data are shown in Fig. [4(d)-(f). While
US-FBP produces severe artefacts, LMU-FBP still gives a decent reconstruction.

7 Conclusion

In this work, we proved a novel analytical inversion formula for the MRT closing
a gap in the existing literature. Discretization with Fourier techniques lead to the
new LMU-FBP algorithm, which can handle non-bandlimited Radon data and
performs on par or even better than US-FBP in this case. Future work includes
weakening the assumptions and analyzing recovery guarantees for discrete data.
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