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Abstract. Watermarks in historical manuscripts are figural shapes serv-
ing as tokens for provenance research (e.g. scribe identification, dating,
papermill attribution, scribe-papermaker relation, trading, etc.) in Hu-
manities such as Musicology. As of today, they come in a variety of
formats: digitized handtracings and rubbings, X-ray based imagery and,
more recently, thermograms acquired with infrared (IR) cameras – all
of which have been made accessible via image data bases in libraries
or archives like the watermark information system (WZIS). A key use
case from a scholar’s perspective is the search for similar or even equal
watermarks in whatever digitized data collections. Non-surprisingly, the
prerequisite is the availability of a versatile, reliable, and user-friendly
tool comprising methods from digital image processing (IP) and pattern
recognition (PR). In our paper, we focus on bridging the gap between
digitized thermograms of music manuscripts and watermark classification
for similarity-based search through (i) a state-of-the-art (SOTA) analy-
sis, (ii) a resulting conceptual design based on well-understood SOTA as
well as novel methods, (iii) an easy-to-use implementation, and (iv) an
experimental validation as Proof-of-Concept (PoC). The current system
performance is characterized using thermograms recently made openly
available within the DRACMarkS project as well as WZIS. The exper-
imental results clearly demonstrate success in bridging the existing gap
hence also setting a baseline for an as yet lacking benchmark.

Keywords: Historical Document Analysis · Image Processing · Docu-
ment Analysis Systems

1 Introduction

Watermarks in historical manuscripts are not just a by-product of manual paper-
making but a figurative mark of papermills – thus a key to provenance research.
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They are physically generated by weaving thin wires in a framed sieve composed
of a grid of chain lines and orthogonal laid lines. During the manual process of
paper production both the metallic watermark and wires leave their trace in the
paper pulp via indentation. Hence watermarks are discernible in manuscripts
through e.g. backlighting or made visible through digital imaging techniques.

Needless to mention that visible (analogue) watermarks attracted researchers
early on since 19th century with C.M. Briquet, G. Piccard and K.T. Weiss as pi-
oneers on documenting, characterizing, annotating, and archiving (see e.g. [24],
for a highly recommendable introduction). However, although digital watermark
archives and information systems are available now, e.g. via the Bernstein por-
tal5, no unique or even standardized watermark taxonomy exists – not to mention
the lack of e.g. an ontology from a vision science perspective.

In our case of thermography for music manuscripts, the primary visual con-
tent of a digital thermogram is both a full or (due to folding or cutting of a paper
sheet) partial watermark and the typically regular grid of bolder chain and thin-
ner laid lines. Both watermarks and chain/laid lines are objects of interest for
musicologists, paper historians, and material scientists (see [12] for paper and
material aspects).

One advantage of thermography for manuscripts as introduced in [17] with
off-the-shelf IR cameras (wavelength range e.g. 1500 – 5500 nm, lower wave-
lengths were shown to be suboptimal [11]) clearly is that neither hand-written
notes nor hand-drawn/pre-fabricated staves are captured due to wavelength
properties of used writing/printing ink (which holds for recto and verso hence
imaging of bleed-through is omitted). In other words, thermography measures
true watermark shape – as compared to e.g. subjective handtracings – based
upon the interaction between IR camera, paper, and IR metrology lab set-up. On
the downside thermogram quality is severely degraded: Low resolution (640×512
pixels in our case), low signal-to-noise ratio (SNR), spatially varying background
texture and intensity gradients (due to e.g. material and lab handling of page).
Even more, digitized watermarks (or, synonymously, strokes) may lack 4-/8-
connectivity and are subject to translation, scaling, and rotation in image do-
main. Moreover, a rather large number of watermark classes as well as subclasses
per class (viz shape variants) exist, whereas the sample size per (sub-)class may
vary significantly. As already mentioned above, neither an international stan-
dardized visual taxonomy nor an ontology could have been achieved – taken all
together: The nature of the image data itself and sparse/imbalanced training
data at hand hinders a deep learning approach as of today.

Alternatively, based on our SOTA analysis (see Section 2), we demonstrate
in our PoC the value of both a processing chain of well-understood IP methods
up to binarization (see Section 3.1) and a Radon-based feature representation
scheme for binarized watermarks (see Section 3.2) which amounts to classifi-
cation fidelity beyond one based upon Euclidean vector space embedding (see
Section 4 for validation via the DRACMarkS dataset6 with 461 thermograms (as

5 https://www.memoryofpaper.eu/
6 https://www.oeaw.ac.at/acdh/projects/schubert-watermarks

https://www.memoryofpaper.eu/
https://www.oeaw.ac.at/acdh/projects/schubert-watermarks
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of August 2023) of which two visually distinct watermark classes were selected
for classification experiments). Finally, we summarize our findings and discuss
future research directions (see Section 5).

2 State of the Art

Although watermark detection, extraction and classification from digitized hand-
tracings as well as manuscripts has been an active area of research since decades,
as yet no work on an end-to-end (E2E) processing chain for thermograms has
been published to the best of our knowledge. However, our SOTA deep dive [6]
resulted in a list of well-understood IP and PR methods already applied to
different watermark imagery serving as candidates for our PoC.

Apart from the fathers of study of (analogue) watermarks – coined filigra-
nology – Zamperoni’s early work [29] laid the foundation for computer-assisted
chain/laid line suppression, contrast enhancement, and binarization. Significant
advancements were later made by Whelan and Soille [27, 28], who improved
watermark extraction using Fourier transform and morphological operators, em-
phasizing the suppression of chain and laid lines. Rauber [22] focused on content-
based image retrieval using watermarks encompassing both manual and semi-
automatic processes, including contrast enhancement and contour refinement.
Additionally, Hiary and Ng [8–10] contributed by using morphological operators
and the Radon transform for highlighting the chain lines as a feature. Deep learn-
ing techniques for watermark classification have also been explored on digitized
handtracings [21,26], but face challenges due to sparse and imbalanced training
data (see above) in the domain of thermography.

Building on our SOTA, it is important to stress that (i) among the vari-
ous research efforts and publications in the field of watermark extraction from
manuscripts, none have specifically addressed the use of thermography data and
(ii) the nature of thermography data clearly suggests a preference for well-
understood IP/PR methods over deep learning. Hence we aim at developing,
implementing, and validating a PoC in the novel context of thermography data
that (i) yields convincing results for watermark extraction and classification and
also (ii) shows the potential of current thermography as a digitization technique.

3 Proof of Concept

As briefly mentioned above, given our systematic SOTA study we focus on (i) an
E2E processing chain of well-understood IP/PR methods but also on (ii) a novel
Radon transform based representation scheme with proven translation and scal-
ing invariance for binarized watermarks enabling effective and accurate classi-
fication with only linear discriminant functions. Prime design criteria for our
PoC were ease-of-use, transparency, understandability, and modularity. In the
following we will elucidate key theoretical, methodical, and practical issues of
our PoC (followed by an experimental validation in Section 4).
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Fig. 1: Low-contrast page (left) from DRACMarkS raw dataset "Mus.Hs. 27666
Bl. 50_1" [15] and clipping result (right)

3.1 Image Processing (IP)

Our PoC design and implementation is specifically tailored to the DRACMarkS
dataset aiming at (i) accommodating for the given image quality (see Section 1)
and (ii) achieving effective watermark binarization. Certain assumptions about
the images are incorporated as optional parameters in the PoC: all images 1) fea-
ture a high-intensity background (due to the heating plate), 2) are captured using
the same camera and lens, 3) contain locally varying intensity degradations, and
4) show vertically oriented chain lines. Given both these valid assumptions and
data quality at hand, a carefully designed combination of preprocessing methods
is indispensable and described as follows.

In the DRACMarkS dataset [15], all images exhibit a high-intensity back-
ground (assumption 1)), which may skew results from both global and local
image processing methods, hence making effective preprocessing essential.

Conventional cropping methods proved inadequate due to a non-rectangular,
often trapezoidal shape of page images, and the risk of truncating watermarks
near page edges. A simple yet effective method for the DRACMarkS dataset
involves intensity clipping using a threshold on the bimodal image histogram to
eliminate the high background intensities. The threshold is heuristically set as

clipthreshold = meanimg +max(meanimg −medianimg, c) (1)

with c = 300 based on experiments (see Fig. 1 (right) for result).
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The next step involves extracting chain lines using the progressive proba-
bilistic Hough transform [16], which is essential for camera calibration (assump-
tion 2)) including distortion correction for 25 mm focal length. After chain line
extraction, a simple cropping based on projection profiles effectively removes
most of the residual background without harming watermarks positioned near
the page edge.

Regarding intensity degradations (assumption 3)), a non-linear median filter
with an experimentally determined window size (7× stroke width) is applied in
order to locally normalize intensity variations while preserving fine detail like
(e.g. neighboring) watermark strokes or chain lines.

Since tightly spaced laid lines are not relevant in our case, suppressing them is
beneficial. Previous research [28,29] has shown that a notch filter in the frequency
domain effectively suppresses these high frequency lines. The filter parameters
(e.g. of a Gaussian) are determined by the spacing and orientation of the laid
lines.

As the last preprocessing step, Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) [20] is applied for further contrast enhancement easing water-
mark detection. We use the root mean square (RMS) contrast as a measure of
contrast, which corresponds to the standard deviation of image intensities. The
clipping limit for CLAHE is set inverse to the contrast of the image. Thus an im-
age with lower contrast receives more pronounced enhancement (see Fig. 2 (left)).

In order to extract watermarks from thermograms, treating them not as
(dis-)connected contours but as strokes of a certain width proved beneficial. For
detection we employ spatial anisotropic Gabor filters

g(x, y) =
1

2πσxσy
e
− 1

2

(
(x−x0)2θ0

σ2
x

+
(y−y0)2θ0

σ2
y

)
ei (2πF0(x cos(ω0)+y sin(ω0))+P ) (2)

with the filter response acting as a multiplicative weight for the image’s intensity
values (see Fig. 2 (right)). Equation (2) shows the complex Gabor filter, as in [19],
and the parameters7 are set such that the filter is tailored to watermark strokes.
Hence an even Gabor filter (the real part with zero offset), similar to filters used
for detecting text lines of a certain height and orientation [7], is used. The choice
of an even Gabor filter ensures that the positive part of the cosine wave matches
the width of the watermark strokes (see Section 4), resulting in a peak output
when positioned directly on the strokes. The user-set watermark stroke width
defines the spatial frequency of the filter.

To detect strokes of different orientation, we use eight filters, oriented from
0◦ to 157.5◦ in 22.5◦ increments, each with an anisotropic Gaussian envelope for
preferred orientation detection. After convolution with these eight Gabor filters,
aggregating the responses effectively becomes a challenge. A simple average of

7 (x0, y0) – center coordinates of the Gaussian; θ0 – rotation angle giving (x−x0)θ0 =
(x− x0) cos(θ) + (y − y0) sin(θ) and (y − y0)θ0 = −(x− x0) sin(θ) + (y − y0) cos(θ);
σ2
x, σ2

y – variance in x-/y-direction; (u0, v0) – spatial frequency with magnitude
F0 =

√
u2
0 + v20 and direction ω0 = arctan

(
v0
u0

)
; P – offset of the sinusoid
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Fig. 2: Results of (left) preprocessing (camera calibration, laid line suppression,
contrast enhancement and normalization) data in Fig. 1 (right) and (right) after
Gabor filtering of preprocessed data from (left)

all outputs might diminish the significance of the most relevant orientation for
each watermark pixel. Thus, we assign each pixel the maximum value from all
filter responses, prioritizing real watermark strokes. The result may contain spu-
rious short line segments, representing errors which have a smaller filter response
compared to those from the watermark strokes.

In order to mitigate these errors, we then apply mathematical morphology,
specifically the black top-hat operator (cf. [25]), which is effective in isolating
small objects against the background. This operator is defined as the differ-
ence between the image’s closing and the original image (refer to [5] for details
on morphological operators). The size of the cross-shaped structuring element
matches the given width of watermark strokes and its shape is chosen for its
superior performance. The result further enhances watermarks while reducing
spurious errors.

As a final IP step, our binarization converts the result from the black top-hat
operator, in short black hat image, into a binary watermark point set. Global
thresholding techniques prove ineffective due to the dominance of zero-valued
pixels, and adaptive thresholding struggles with high noise levels in the lower
value range of the black hat image, leading to errors. Therefore we apply the hys-
teresis thresholding proposed by Canny [4] after simple histogram equalization
stretching the histogram of the black hat image and thus simplifying threshold
selection. For the DRACMarkS dataset [15], we identified effective thresholds
after equalization through comparative analysis of a subset consisting of two
images from each of 39 pages (78 images in total). While still resulting in some
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Fig. 3: Result of binarization with masked (middle) and overlayed (right) chain-
lines of preprocessed raw data (left)

false positives, these thresholds accommodate well for the variability in image
quality within the DRACMarkS dataset [15].

In the end, we present two outputs for the binarized watermark (see Fig. 3):
The first one masks nearly all detected chain lines, while the second one overlays
them (e.g. for providing valuable insights into paper making).

3.2 Pattern Recognition (PR)

Given the limited access to labelled thermograms of watermarks that can serve
as training data, the determination of similarities of watermarks, which is essen-
tial for any PR approach, requires a suitable feature representation of a given
binarized watermark. Moreover, we require that the PR results are invariant with
respect to translation and scaling of the watermark and are tolerant against still
remaining spurious short line segments, cf. Fig. 3 (middle).

For this purpose, we apply the so-called Radon Cumulative Distribution
Transform (R-CDT) introduced in [13]. As a first step, for an image, modelled
as a non-negative function f : R2 → R≥0 normalized by

∫
R
∫
R f(x, y) dxdy = 1,

the Radon transform

Rf(t, θ) =

∫
ℓt,θ

f(x, y) d(x, y)

is computed, where ℓt,θ = {(x, y) ∈ R2 | x cos(θ) + y sin(θ) = t} denotes the
unique straight line with signed distance t ∈ R to the origin and normal direction
nθ = (cos(θ), sin(θ)) for θ ∈ [0, π). In a second step, for each angle θ ∈ [0, π) the
cumulative distribution transform (CDT) p̂θ of the univariate Radon projection
pθ = Rf(·, θ) is computed such that∫ p̂θ(s)

−∞
pθ(t) dt =

∫ s

−∞
r(t) dt
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for a fixed reference signal r : R → R≥0 satisfying
∫
R r(t)dt = 1, typically chosen

as the characteristic function r = χ[0,1] of the interval [0, 1]. Note that p̂θ corre-
sponds to the optimal transport map that transports r to pθ while minimizing
the transport cost and can be computed based on the cumulative distribution
functions of pθ and r. In this way, any normalized image f : R2 → R≥0 is mapped
to its R-CDT R̂f : R× [0, π) → R.

This feature representation is tailored to our requirement of invariance with
respect to translation and scaling of the watermark in the sense that the R-CDT
enables linear separability of classes that are generated from template images
by certain transformations. To be more precise, assume that we are given two
image classes F, G that are generated by normalized template images f0, g0 via

F =
{
f | ∀ θ ∈ [0, π)∃hθ ∈ H : Rf(t, θ) = h′

θ(t)Rf0(hθ(t), θ) ∀ t ∈ R
}

G =
{
g | ∀ θ ∈ [0, π)∃hθ ∈ H : Rg(t, θ) = h′

θ(t)Rg0(hθ(t), θ) ∀ t ∈ R
}
,

where H is a convex group of increasing diffeomorphisms h : R → R with respect
to function composition. Then, we can show that the transformed image classes
in R-CDT space

F̂ =
{
R̂f(·, θ0) | f ∈ F

}
, Ĝ =

{
R̂g(·, θ0) | g ∈ G

}
are linearly separable if θ0 ∈ [0, π) is chosen such that RF(·, θ0)∩RG(·, θ0) = ∅.
This is in contrast to [13], where the R-CDT is considered for all θ ∈ [0, π).

Of particular importance are the cases H = {h | h(t) = t+c for some c ∈ R},
which leads to translation of images, i.e.,

F =
{
f
∣∣ f(x, y) = f0(x+ cx, y + cy) for some cx, cy ∈ R

}
,

and H = {h | h(t) = ct for some c > 0}, which yields mass preserving scaling of
images, i.e.,

F =
{
f
∣∣ f(x, y) = c2f0(cx, cy) for some c > 0

}
.

Both choices for H are convex groups of diffeomorphisms with respect to function
composition and, hence, we can linearly separate two image classes in R-CDT
space using only one angle θ0 ∈ [0, π) if the two classes were generated by trans-
lation and/or mass preserving scaling of two distinct template images. Note that,
so far, image rotation cannot be covered by our theory. However, our numerical
experiments in Section 4 show that linear separability in R-CDT space can also
be achieved for rotation and even shear when increasing the number of angles.

To deal with discrete images I ∈ RN×M consisting of N ×M pixels, we use a
standard discretization [1] of the Radon operator in Python mapping I onto the
Radon sinogram RI ∈ RJ×K , where J corresponds to the number of parallel lines
per angle and K is the number of angles, where we typically have J =

⌈√
2N

⌉
for M = N . Thereon, the CDT is discretized using spline interpolation, leading
to the R-CDT sinogram R̂I ∈ RJ×K , which serves as feature representation of
I for the subsequent application of classical pattern recognition algorithms like,



Image Processing and Pattern Recognition for Thermograms of Watermarks 9

Fig. 4: Radon (middle) and R-CDT (right) sinograms as feature representation
of a cropped binarized watermark (left)

e.g., support vector machines (SVMs) for classification, k-means clustering or
principle component analysis (PCA) for the sake of dimensionality reduction.

For illustration, Fig. 4 shows the binarized watermark from Fig. 1 manually
cropped to 280× 280 pixels along with its Radon and R-CDT sinogram both of
396× 180 pixels.

4 Experimental Validation

Image Processing. Next up we provide details on (i) our experimental data
and strategy, (ii) so far achieved IP/PR results as well as on (iii) constraints
on the parameter space. The ideal approach to our validation would require a
benchmark along with a comprehensive dataset and performance metrics, yet
the sparse coverage of thermography data in prior studies hinders benchmark-
ing. Moreover, the lack of ground truth from experts having traced watermarks
from thermography data force us to rely on subjective rating-based image qual-
ity assessment (IQA) with an ordinal scale (see [2]). Our validation task is fur-
ther complicated by the varying quality of DRACMarkS data [15] ranging from
high to low quality (see below). Our IQA aligns with the digitization guidelines
provided by the Deutsche Forschungsgemeinschaft [3] and the Federal Agencies
Digital Guidelines Initiative [23].

In terms of our IQA, the focus is on the following criteria: contrast between
watermark and background, manuscript noise and degradations, as well as the
discernibility of the watermark, particularly its completeness. To systematically
assess quality, we have devised a rating scheme with four categories according
to these criteria.

From the overall 461 DRACMarkS manuscript pages, a publicly accessible
subset of 187 pages of six manuscripts [15] was rated by us. The categorization,
based solely on our IQA, comprises 80 images rated as low, 58 as medium, and
14 as high quality. The remaining 35 images were unrated due to the absence of
discernible watermarks. Note that ‘high quality’ within this raw dataset might
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Fig. 5: Samples of preprocessed high-quality DRACMarkS data (top) and PoC
results (bottom) for moon (left), blazon (middle) and lily (right) watermarks

not meet the same standard when compared to postprocessed thermography
datasets (e.g. WZIS [14]).

Low quality: Raw images often lack discernible watermarks or are obscured
by noise and poor contrast. The final PoC outputs typically exhibit substantial
errors and are as yet unsuitable for further processing.

Medium quality: Images show degradations like strong brightness variations
that do not affect the watermark. The PoC output yields watermarks with an
acceptable watermark-to-error (in pixels, respectively) ratio, although spurious
line segments remain. Note that error here refers to the spurious line segments
scattered throughout the image.

High quality: Images contain minimal degradations and noise, but show a
high watermark-to-background contrast. The PoC output captures watermark
strokes effectively, with few errors like gaps (see Fig. 5).

In terms of even higher quality, the Staatsbibliothek zu Berlin8 (SBB) has
provided thermography data to WZIS, which we also used for our validation.
The SBB data display a noticeable improvement in quality compared to those
of DRACMarkS, especially in terms of noise, contrast, and brightness variations

8 https://staatsbibliothek-berlin.de/en/about-the-library/departments/music

https://staatsbibliothek-berlin.de/en/about-the-library/departments/music
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Fig. 6: Samples of original high-quality SBB/WZIS data (top) and PoC results
(bottom) for watermarks of different figural shape on different backgrounds

and are cropped to show only the watermark. However, the lack of metadata de-
tail about the digitization process and postprocessing of SBB’s raw data impedes
direct comparison to raw data from DRACMarkS.

Our PoC, developed for the DRACMarkS raw data, needs only slight ad-
justments when applied to the SBB data, e.g. intensity clipping and camera
calibration are not necessary. The resulting successful binarization of water-
marks demonstrates the versatility and robustness of our PoC. Our results are
highly satisfactory, see Fig. 6 for our PoC output based on three SBB thermo-
grams9,10,11 with masked chain lines, exceptionally low error rates, and nearly
complete binarized watermarks.

In closing the multi-stage IP part, regarding ease-of-use it is worth stressing
that all parameters except one are (i) optimized for the DRACMarkS dataset
via experimentation and (ii) fixed for all experiments with both datasets (also
the one of SBB/WZIS). The only user-set parameter is the stroke width of wa-
termarks (e.g. 3 pixels for DRACMarkS and 5 pixels for SBB).

Classification. To illustrate the effectiveness of our proposed feature represen-
tation for binarized watermarks, we now focus on a binary classification task

9 https://www.wasserzeichen-online.de/wzis/?ref=DE0960-BachSt191a_186
10 https://www.wasserzeichen-online.de/wzis/?ref=DE0960-Martines1M_III
11 https://www.wasserzeichen-online.de/wzis/?ref=DE0960-Telemann21737_200_23v

https://www.wasserzeichen-online.de/wzis/?ref=DE0960-BachSt191a_186
https://www.wasserzeichen-online.de/wzis/?ref=DE0960-Martines1M_III
https://www.wasserzeichen-online.de/wzis/?ref=DE0960-Telemann21737_200_23v
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Fig. 7: Binarized blazon/lily watermarks serving as templates for dataset via
data augmentation with random translation, scaling, rotation and shear

Fig. 8: Result of PCA for fully augmented watermark dataset (Fig. 7) in both
Euclidean (left) and R-CDT (right) space

and consider two different watermarks from manuscripts of the DRACMarkS
dataset [15], which we binarized and manually cropped to 280× 280 pixels, see
Fig. 7. Each of those serves as the template image of a class of watermark images,
which we aim to classify. To this end, each template image is zero-paddded to a
size of 560×560 pixels and, afterwards, randomly scaled by a factor between 0.75
and 1.25, rotated by an angle between −10◦ and 10◦, horizontally sheared with
shear angle between −0.25 rad and 0.25 rad and, finally, translated horizontally
and vertically by up to ±125 pixels in both directions. With this procedure, we
create an augmented dataset of two classes consisting of 100 watermarks each.

Fig. 8 visualizes the dataset using principal component analysis (PCA) with
dimension 3, for ease of visualization projected onto the plane spanned by the
first and third principal direction. The PCA depicted in Fig. 8 (left) uses the
canonical representation in the Euclidean space R560×560 =̂ R313600, whereas
the PCA in Fig. 8 (right) uses our proposed feature representation based on
the R-CDT with only one angle θ0 = 0◦, leading to a much lower-dimensional
representation in R794, referred to as R-CDT space, which amounts to a reduc-



Image Processing and Pattern Recognition for Thermograms of Watermarks 13

Fig. 9: Test accuracy given two-class-problem with hard-margin SVM for 50 (left)
and 5 (right) training samples in Euclidean vs. R-CDT space

tion of approximately 367 times. We clearly observe that the classes are linearly
separable in R-CDT space, but not in Euclidean space.

To confirm this observation, we trained hard-margin support vector machines
(SVMs) with linear kernel (cf. [18]) to solve this binary classification task. The
test accuracy is shown in Fig. 9, where we use 50% and 5%, respectively, of
the watermarks for training and the complement for testing. As expected, we
observe that in Euclidean space the SVM is not able to separate the classes,
whereas in R-CDT space the SVM yields a perfect result, both using only one
or two angles θ ∈ {0◦, 90◦}. Moreover, while the classification result degrades in
Euclidean space when decreasing the number of training images from 50 to 5,
the classification is still perfect in R-CDT space.

In an additional experiment, simulating the standard use case of similarity-
based search of watermarks in an available database like WZIS [14], we consider
the binary classification task for two distinct classes of visually similar water-
marks from different manuscripts of the DRACMarkS dataset [15]. The reason
for simulations is the trivial fact that existing watermark databases do currently
not contain our novel R-CDT representation. As of now, we identified 20 in-
stances of both the blazon and lily watermark depicted in Fig. 7, which we
binarized and manually cropped to 280×280 pixels, cf. Fig. 10, leading to a test
dataset of in total 40 binarized DRACMarkS watermarks. The classification is
based on five thermograms12,13,14,15,16 of each the blazon and lily watermark
from WZIS, which we also binarized using our PoC and cropped to 280 × 280
pixels. Thereon, each image is randomly scaled by a factor between 0.75 and 1,
rotated by an angle between −5◦ and 5◦, horizontally sheared with shear angle
between −0.25 rad and 0.25 rad and, finally, translated horizontally and verti-
cally by up to ±25 pixels in both directions to create a training dataset of in
total 40 watermarks.

12 https://www.wasserzeichen-online.de/wzis/?ref=DE0960-Schubert13_5
13 https://www.wasserzeichen-online.de/wzis/?ref=DE0960-SchubertF32_4
14 https://www.wasserzeichen-online.de/wzis/?ref=DE0960-Schubert41_9
15 https://www.wasserzeichen-online.de/wzis/?ref=DE0960-BeethovenArtaria138_48
16 https://www.wasserzeichen-online.de/wzis/?ref=DE4795-GoS20_f.4

https://www.wasserzeichen-online.de/wzis/?ref=DE0960-Schubert13_5
https://www.wasserzeichen-online.de/wzis/?ref=DE0960-SchubertF32_4
https://www.wasserzeichen-online.de/wzis/?ref=DE0960-Schubert41_9
https://www.wasserzeichen-online.de/wzis/?ref=DE0960-BeethovenArtaria138_48
https://www.wasserzeichen-online.de/wzis/?ref=DE4795-GoS20_f.4
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Fig. 10: Results of classification via R-CDT space for blazon/lily watermarks in
binarized DRACMarkS data (green indicates correct whereas red false labeling)

For solving the binary classification task, we use our proposed R-CDT feature
representation with two angles θ ∈ {0◦, 90◦} followed by a hard-margin SVM
with linear kernel. The predicted labels of the DRACMarkS test watermarks are
shown in Fig. 10, where we achieve an accuracy of 92.5%.

For comparison, we also trained soft-margin SVMs with Gaussian kernel
(cf. [18]) based on the conventional Euclidean representation of watermarks,
thereby relaxing the strict condition of linear separability in Euclidean space. In
this case, the predicted label is constantly ‘blazon’ so that the accuracy is only
50% and, hence, SVM classification in Euclidean space fails.

5 Conclusion

Starting out from our systematic SOTA study and following a theory-driven
system engineering approach, we proposed a novel E2E processing pipeline as a
PoC and validated it through initial well-designed experiments with thermogra-
phy data of varying quality. Key design criteria of our concept were the use of
raw thermography data, transparency and understandability of selected IP/PR
methods, ease-of-use, flexibility in chaining of methods, mastering of complexity
via a controllable parameter regime, and definition of baseline performance fac-
ing the lack of benchmarks. On the one hand, our PoC clearly demonstrates its
validity while on the other hand it uncovers current limits (e.g. spurious short
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line segments) to be alleviated by improved methods. Furthermore, our results
documented their dependence on image quality – a trivial fact that will spur
further research on IR sensor characteristics including noise modeling, IR-paper
interaction, IR signal detection etc. Regarding prevalent digitized watermark
hand tracings as well as current Deep Learning (DL) research, we also propose
to scrutinize the option of training appropriate DL models for single tasks in
the processing chain, e.g. binarization. Moreover, an in-depth analysis of gener-
alizability and scalability of our concept is to be conducted w.r.t. a concerted
thermography lab set-up and a larger test dataset from various archives. In
closing, the watermark research community is well-advised to develop an inter-
disciplinary roadmap towards computational filigranology.
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