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Abstract. The method of filtered back projection (FBP) is a widely used reconstruction technique in X-ray
computerized tomography (CT), which is particularly important in clinical diagnostics. To reduce
scanning times and radiation doses in medical CT settings, enhancing the reconstruction quality of
the FBP method is essential. To this end, this paper focuses on analytically optimizing the applied
filter function. We derive a formula for the filter that minimizes the expected squared L2-norm of
the difference between the FBP reconstruction, given infinite noisy measurement data, and the true
target function. Additionally, we adapt our derived filter to the case of finitely many measurements.
The resulting filter functions have a closed-form representation, do not require a training dataset, and,
thus, provide an easy-to-implement, out-of-the-box solution. Our theoretical findings are supported
by numerical experiments based on both simulated and real CT data.
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1. Introduction. The method of filtered back projection (FBP) is a commonly used recon-
struction algorithm in X-ray computerized tomography (CT) [38], which aims at determining
the internal structure of objects under investigation by measuring the attenuation of X-rays.
Until today, CT is widely employed in medical diagnostics and non-destructive testing. The
measured data can be modelled as line integral values of the attenuation function f ≡ f(x, y)
of the object, formally represented via its Radon transform Rf ≡ Rf(s, φ), defined by

Rf(s, φ) =
∫
{x cos(φ)+y sin(φ)=s}

f(x, y) d(x, y) for (s, φ) ∈ R× [0, π).

With this, we can formulate the CT reconstruction problem as determining the attenuation
function f from its Radon data

{Rf(s, φ) | s ∈ R, φ ∈ [0, π)}.

Hence, one needs to invert the Radon transform R. Based on the work of Johann Radon [45],
its analytical inversion was proven to be performed by the FBP formula [18, 35], given by

f(x, y) =
1

2
B(F−1[|σ|F(Rf)(σ, φ)])(x, y) for all (x, y) ∈ R2,
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where Fh denotes the univariate Fourier transform acting on the radial variable s of a function
h ≡ h(s, φ), i.e.,

Fh(σ, φ) =
∫
R
h(s, φ) e−isσ ds for (σ, φ) ∈ R× [0, π),

and Bh is the back projection of h ≡ h(s, φ), defined by

Bh(x, y) = 1

π

∫ π

0
h(x cos(φ) + y sin(φ), φ) dφ for (x, y) ∈ R2.

The FBP formula is highly sensitive to noise as the involved filter |σ| particularly amplifies
high-frequency components. Since, in practice, only noisy Radon data gε can be measured, it
is necessary to stabilize the FBP formula. To this end, the filter |σ| is typically replaced by a
compactly supported low-pass filter AL ≡ AL(σ) with bandwidth L > 0 [36], leading to the
approximate FBP reconstruction formula

f εL(x, y) =
1

2
B(F−1[AL(σ)Fgε(σ, φ)])(x, y) for (x, y) ∈ R2.

This approximate reconstruction formula is computational efficient, especially when compared
to iterative reconstruction approaches such as the algebraic reconstruction technique (ART)
and simultaneous iterative reconstruction technique (SIRT).

However, the reconstruction quality deteriorates with noisy measurement data, in partic-
ular when using standard filter functions (cf. [42]). Additionally, in medical CT, reducing
scanning times and radiation doses is crucial due to the harmful effects of X-radiation, which
degrades the reconstruction quality even further. Consequently, comprehensive research has
focused on improving the reconstruction quality of the FBP method. One approach is to
optimize the introduced filter function AL of the approximate FBP formula. This topic has
recently regained attention in the research community, with several studies focusing on en-
hancing reconstruction quality by adapting the filter function. These approaches can be
divided into two categories: analytical methods that define desirable properties of the filter
and data-driven methods that involve learning a filter function. However, most methods in
the literature do not provide a closed-form solution for the filter. Instead, they require solving
an optimization problem or rely on datasets that are challenging to obtain, particularly in the
context of medical CT. Moreover, noise in the measured data is often only implicitly addressed
in the design of the filter function. For further details, we refer to Section 2.

As opposed to this, in this work, we derive an analytical formula for an optimized filter
function enhancing the reconstruction quality of the approximate FBP formula. To achieve
this, we model the noise in the measured data as a generalized stochastic process that ap-
proximates Gaussian white noise, which is grounded on observations in the literature. Based
on this noise model, we construct our filter function by minimizing the expectation of the
squared L2-norm of the difference between the approximate FBP reconstruction f εL and the
true attenuation function f . We derive a formula for the resulting filter function in the context
of complete measurement data and provide an adaptation for the case of a finite number of
measurements. Our proposed filters are as straightforward to implement as standard filters,
quite fast to compute and do not require a training dataset, making them readily applicable.
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The manuscript is organized as follows. Section 2 is devoted to a more detailed review
of related result in the literature. In Section 3, we develop a suitable model for the measure-
ment noise based on generalized stochastic Gaussian white noise processes. We then derive
our optimized filter function in the continuous setting in Section 4.1 and adapt it to finite
measurement data in Section 4.2. We validate the performance of our filter function through
numerical experiments in Section 5 by comparing it with filter functions from the literature.
Finally, Section 6 concludes with a discussion of our findings and future research directions.

2. Related results. The FBP method remains one of the most commonly used recon-
struction algorithms in CT and extensive research has focused on improving its reconstruction
quality. In the following, we describe various approaches that have been developed in the lit-
erature to address this task. One idea involves developing pre- and post-processing methods,
either for denoising the measured data or enhancing the computed reconstructions. Besides
classical methods like Wiener filtering and wavelet decomposition, recent works have explored
the use of deep learning techniques. For more details on pre- and post-processing methods in
the context of CT, we refer the reader to the overview articles [2, 12, 37, 47, 46].

In addition, the FBP method allows for a direct way to improve the reconstruction quality
by changing the involved filter function AL, which has been the focus of several studies. For
noiseless measurement data, [3] noted that the classical Ram-Lak filter is the best choice
w.r.t. the L2-norm of the reconstruction error given complete measurement data g. In [49],
the authors adapt the Ram-Lak filter for noiseless finite measurements gD by expressing the
filter function through its Fourier series expansion and determining the coefficients by solving
an optimization problem derived from a reformulation of the FBP method.

In real-world applications, however, noise in the measured data has to be considered when
designing filter functions. In [42], a data-dependent filter for the FBP method is introduced,
which minimizes the squared difference between the Radon transform of the reconstruction
and the noisy data gεD so that a minimization problem must be solved for each measurement
independently. The authors call the resulting method the minimum residual FBP method,
abbreviated as MR-FBP. They also add a regularization term to the minimization problem,
resulting in the so-called MR-FBPGM method. The regularization term incorporates a con-
straint on the horizontal and vertical discrete gradients of the reconstruction and can be
controlled by an additional hyperparameter λ > 0.

Recently, the authors in [25] aim at choosing the filter function by minimizing the true
risk w.r.t. the squared L2-error between the FBP reconstruction and the ground truth, i.e.,
they consider the minimization problem

min
AL

E
(∥∥∥f − 1

2
B(F−1AL ∗ gε)

∥∥∥2
L2(R2)

)
,

where the expectation is w.r.t. the ground truth f and the noisy measurement data gε. Since
calculating the true risk is infeasible in practice due to an unknown data distribution, they
propose to minimize the empirical risk instead by replacing the expectation by the mean over
a finite dataset consisting of noiseless measurements and additive noise samples. We refer to
this as the empirical risk minimization FBP method, in short ERM-FBP.

Another approach for improving reconstruction quality is to mimic other reconstruction
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methods, such as iterative reconstruction techniques. This approach is demonstrated in [43],
where the filter is designed in such a way that the FBP method approximates the algebraic
simultaneous iterative reconstruction technique, resulting in the SIRT-FBP method. The
SIRT-FBP filter depends solely on the discretization parameters and can be pre-calculated
before reconstructing. This filter is applied to a large-scale real-world dataset in [44].

The authors of [23] design filters that integrate both the filtering process with ideal ramp
filter and an interpolation scheme, which is commonly employed when applying the FBP
method, to reduce errors caused by interpolation. The authors discovered that their filters
substantially enhance reconstructions only for interpolation schemes of up to second order.

Besides these analytical approaches, there have been recent developments in learning-
based selection of filter functions. As this paper focuses on analytically optimizing the filter
function, we will refrain from discussing it here. Instead, the interested reader is encouraged
to consult [30, 41, 50, 52, 60] for various methods involving neural networks.

3. White noise and technical lemmata. In applications, the Radon data Rf is always
corrupted by noise caused, for example, by scattered radiation or the conversion of the mea-
sured X-ray photons into a digital signal by the detectors, cf. [10, 14, 22, 26, 59]. Due to the
various sources of measurement errors and unknown system calibrations in real-world applica-
tions, it is in general not feasible to analytically model the probability distribution of the noise,
see [19, 31]. Instead, one needs to approximate the distribution based on measurement data,
which is dealt with in several papers, e.g., [31, 32, 33, 57]. The findings in the literature indi-
cate that the measurement noise can be modelled by independent identically distributed (iid)
additive Gaussian random variables, even in low intensity regimes. This process is commonly
referred to as Gaussian white noise.

Its formal definition is based on the classical Wiener process W : Ω′ ×Ω → R, also called
Brownian motion process, with Ω′ ⊆ Rn and a probability space (Ω,F ,P), which describes
the path of a particle without inertia caused by Brownian motion. Gaussian white noise,
typically denoted by H, is then defined as the distributional derivative of the Wiener process
and characterizes the velocity of a particle without inertia due to Brownian motion. To be
more precise, H : D(Ω′)× Ω → R is given by

H(ϕ, ω) = −⟨W (·, ω), ϕ′⟩ = −
∫
Ω′
W (x, ω)ϕ′(x) dx

for all ϕ ∈ D(Ω′) and ω ∈ Ω, where D(Ω′) denotes the space of real-valued test functions. Note
that, for simplicity, we consider the space of real-valued test functions D(Ω′) as well as the
space of real-valued Schwartz functions S(Rn) throughout this work. Our results, however,
can be easily modified to complex-valued functions. The properties of the Wiener process
imply that H(ϕ, ·) is a Gaussian random variable for all ϕ ∈ D(Ω′) with

E(H(ϕ, ·)) = 0 and E(H(ϕ, ·)H(ψ, ·)) = (ϕ, ψ)L2(Ω′)

for all ϕ, ψ ∈ D(Ω′). For a precise definition of a Wiener process and a detailed derivation
of the above properties we refer the reader to [21, Chapter III] and [51, Chapter 1]. Since
a Gaussian process is uniquely defined by its mean and covariance, cf. [21, Chapter III.2.3],
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we obtain the following equivalent definition, which is more commonly used in the setting of
inverse problems, see, e.g., [27, p.3].

Definition 3.1 (Continuous white noise). Continuous white noise is a function

H : D(Ω′)× Ω → R

such that H(·, ω) ∈ D ′(Ω′) for all ω ∈ Ω and H(ϕ, ·) : Ω → R is a Gaussian random variable
on the probability space (Ω,F ,P) for all ϕ ∈ D(Ω′) with

E(H(ϕ, ·)) = 0 and E(H(ϕ, ·)H(ψ, ·)) = (ϕ, ψ)L2(Ω′)

for all ϕ, ψ ∈ D(Ω′). In addition, continuous white noise Hε : D(Ω′) × Ω → R with noise
level ε > 0 is defined by Hε = εH.

We remark that continuous white noise is a so-called generalized stochastic process, as
introduced in [21, Chapter III]. Moreover, one can prove that H(·, ω) ∈ S ′(Rn) for almost all
ω ∈ Ω, see [11, 15] and, thus, H can be equivalently defined as a mapping from S(Rn) × Ω
to R such that H(·, ω) has support in Ω′ ⊆ Rn in the sense of distributions.

The definition of continuous white noise H implies that the amount of power is the same
for all frequencies, i.e., the power spectrum of the process is flat, cf. [20, Chapter 1.5.4]. Such
a process cannot exist in reality as it would require an infinite amount of energy. Instead,
continuous white noise can be understood as an idealised model of a process with approx-
imately independent values at every point. To circumvent this shortcoming of white noise,
physicists often approximate white noise by assuming that points very close to each other are
correlated, see [20, Chapter 4.1] and [51, Chapter I.10]. This motivates the following definition
of approximate white noise.

Definition 3.2 (Approximate continuous white noise). Approximate continuous white noise
Ha : S(Rn)× Ω → R with support in Ω′ ⊆ Rn is defined as

Ha(ϕ, ω) =

∫
Rn

ha(x, ω)ϕ(x)1Ω′(x) dx,

where 1Ω′ : Rn → {0, 1} is the characteristic function of Ω′ and ha : Rn ×Ω → R for a > 0 is
a jointly-measurable function with the property that, for any k ∈ N, (ha(x1, ·), . . . , ha(xk, ·))
with x1, . . . , xk ∈ Rn is a (multivariate) Gaussian random variable on the probability space
(Ω,F ,P) with

E(ha(x, ·)) = 0 and E(ha(x, ·)ha(y, ·)) = δa(x− y) for all x, y ∈ Rn,

where (δa)a>0 is a Dirac sequence with even δa : Rn → R≥0 satisfying δa → δ for a → ∞.
In addition, approximate continuous white noise Hε

a : S(Rn)× Ω → R of noise level ε > 0 is
defined by Hε

a = εHa.

In the following, we restrict our investigations to Ha = H1
a . Note, however, that all results

also hold for the general case of Hε
a with ε > 0. Let us first observe that for fixed ω ∈ Ω,

the realization Ha(·, ω) ∈ S ′(Rn) is a tempered distribution. Moreover, for fixed x ∈ Rn, the
variance E(ha(x, ·)ha(x, ·)) = δa(0) diverges for a→ ∞.



6 M. BECKMANN, AND J. NICKEL

In the case that δa(t) = a
2 exp

−a|t| for t ∈ R, ha corresponds to a stationary Ornstein-
Uhlenbeck process with zero mean [20, Chapter 3.8.4 & 4.1]. The Ornstein-Uhlenbeck process
was first introduced as an improved model of the velocity of a particle caused by Brownian
motion [55] and is commonly used as an approximation of Gaussian white noise in various use
cases, see, e.g., [8], [20, Chapter 4.1], [24] and [51, Chapter I.10]. In this sense, Definition 3.2
can be seen as a generalization of the Ornstein-Uhlenbeck process, allowing for a wider variety
of processes.

The approximate white noise Ha is again a Gaussian random variable for fixed ϕ ∈ S(Rn),
whose first and second moments depend on the function ha. This is characterized in the
following lemma.

Lemma 3.3. Let Ha : S(Rn) × Ω → R be an approximate continuous white noise with
support in Ω′ ⊆ Rn. Then, Ha(ϕ, ·) : Ω → R is a Gaussian random variable for all ϕ ∈ S(Rn)
with

E(Ha(ϕ, ·)) = 0 and E(Ha(ϕ, ·)Ha(ψ, ·)) =
∫
Ω′

∫
Ω′
δa(x− y)ϕ(x)ψ(y) dx dy

for all ψ, ϕ ∈ S(Rn).

Proof. Let us start with the calculation of the expectation of Ha(ϕ, ·) for ϕ ∈ S(Rn). To
this end, observe that Ha(ϕ, ·) is a random variable as ha is jointly-measurable and∫

Ω

∫
Ω′
|ha(x, ω)| |ϕ(x)| dx dP(ω) =

√
2δa(0)

π

∫
Ω′
|ϕ(x)| dx <∞,

which follows from Fubini’s Theorem and E(|ha(x, ·)|) =
√

2δa(0)/π for all x ∈ Rn due to [54].
Hence, applying Fubini’s Theorem again results in

E(Ha(ϕ, ·)) =
∫
Ω

∫
Ω′
ha(x, ω)ϕ(x) dx dP(ω) =

∫
Ω′

E(ha(x, ·))ϕ(x) dx = 0.

For the calculation of the covariance of Ha(ϕ, ·) and Ha(ψ, ·) for ϕ, ψ ∈ S(Rn) note that

∫
Ω

∫
Ω′

∫
Ω′
|ha(x, ω)ha(y, ω)| |ϕ(x)ψ(y)| dx dy dP(ω)

=

∫
Ω′

∫
Ω′

E (|ha(x, ·)ha(y, ·)|) |ϕ(x)ψ(y)| dx dy

≤
∫
Ω′

∫
Ω′

E
(
|ha(x, ·)|2

)1/2 E (|ha(y, ·)|2)1/2 |ϕ(x)ψ(y)| dx dy

by Fubini’s Theorem and Cauchy Schwarz’s inequality so that∫
Ω

∫
Ω′

∫
Ω′
|ha(x, ω)ha(y, ω)| |ϕ(x)ψ(y)| dx dy dP(ω) ≤ δa(0)

∫
Ω′

∫
Ω′
|ϕ(x)ψ(y)| dx dy <∞.
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Consequently, we obtain

E(Ha(ϕ, ·)Ha(ψ, ·)) =
∫
Ω

∫
Ω′

∫
Ω′
ha(x, ω)ha(y, ω)ϕ(x)ψ(y) dx dy dP(ω)

=

∫
Ω′

∫
Ω′

E(ha(x, ·)ha(y, ·))ϕ(x)ψ(y) dx dy

=

∫
Ω′

∫
Ω′
δa(x− y)ϕ(x)ψ(y) dx dy.

In order to prove that Ha(ϕ, ·) : Ω → R is a Gaussian random variable for all ϕ ∈ S(Rn),
we consider the set

H = span{ha(x, ·) : Ω → R | x ∈ Rn},

where the closure is w.r.t. the canonical norm of the Hilbert space of square integrable random
variables on (Ω,F ,P). As ha is a Gaussian process by assumption, H consists of Gaussian
random variables. The aim now is to show that Ha(ϕ, ·) ∈ H, where we have H = (H⊥)⊥

since H is closed. We have already seen that Ha(ϕ, ·) is a square-integrable random variable.
Thus, it remains to prove that E(XHa(ϕ, ·)) = 0 for all X ∈ H⊥. To this end, note that∫

Ω
E (|X| |ha(x, ·)|) |ϕ(x)| dx ≤

∫
Ω
E
(
|X|2

)1/2 E (|ha(x, ·)|2)1/2 |ϕ(x)| dx
= E

(
|X|2

)1/2
δa(0)

1/2

∫
Ω
|ϕ(x)| dx <∞

due to Cauchy Schwarz’s inequality. As a result, Fubini’s Theorem yields

E(XHa(ϕ, ·)) =
∫
Ω′

E(Xha(x, ·))ϕ(x) dx = 0

because ha(x, ·) ∈ H for all x ∈ Rn and the proof is complete.

These properties of the approximate continuous white noise Ha imply its convergence to
white noise H as specified in the following lemma.

Lemma 3.4. Let Ha : S(Rn) × Ω → R be an approximate continuous white noise with
support in Ω′ ⊆ Rn. Then, for all ϕ ∈ D(Ω′), the sequence of random variables (Ha(ϕ, ·))a>0

converges weakly1 to a Gaussian random variable H0(ϕ, ·) : Ω → R with

(3.1) E (H0(ϕ, ·)) = 0 and E (H0(ϕ, ·)H0(ψ, ·)) = (ϕ, ψ)L2(Ω′)

for all ψ ∈ D(Ω′).

Proof. First, observe that Lemma 3.3 yields lima→∞ E(Ha(ϕ, ·)) = 0 and

lim
a→∞

E(Ha(ϕ, ·)Ha(ψ, ·)) = (ϕ, ψ)L2(Ω′)

1A sequence of random variables (Xn)n converges weakly to a random variable X with cumulative distri-
bution function F if the corresponding cumulative distribution functions (Fn)n converge pointwise to F at all
points of continuity of F , cf. [9, Chapter 5].
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for all ϕ, ψ ∈ D(Ω′) as (δa)a∈R+ is a Dirac-sequence. The method of moments [9, Theorem
30.2] in combination with the property that the moments of a Gaussian random variable are
uniquely determined by its first and second moment [39, Chapter 5.4] now imply that Ha(ϕ, ·)
converges weakly to a Gaussian random variable H0(ϕ, ·) : Ω → R for all ϕ ∈ D(Ω′) with
expectation zero and variance (ϕ, ϕ)L2(Ω′). For the covariance, observe that

E (H0(ϕ, ·)H0(ψ, ·)) =
1

2

(
E
(
(H0(ϕ, ·) +H0(ψ, ·))2

)
− E

(
H0(ϕ, ·)2

)
− E

(
H0(ψ, ·)2

))
=

1

2

(
(ϕ+ ψ, ϕ+ ψ)L2(Ω′) − (ϕ, ϕ)L2(Ω′) − (ψ,ψ)L2(Ω′)

)
= (ϕ, ψ)L2(Ω′),

where we used that H0(ϕ, ·) +H0(ψ, ·) is the weak limit of Ha(ϕ, ·) +Ha(ψ, ·) and the same
arguments as above prove that the variance ofH0(ϕ, ·)+H0(ψ, ·) is given by (ϕ+ψ, ϕ+ψ)L2(Ω′).
This completes the proof.

The last lemma shows that our definition of approximate white noise is sensible in the
sense that its weak limit has the same first and second moments as white noise H.

An important characteristic of white noise is the regularity of its realizations. There are
several works addressing the regularity of white noise H, e.g., [1, 56, 16, 17]. For instance, [1]
shows that the realizations of white noise H : S(Rn)× Ω → R belong to the weighted Besov
space Bτ

p (Rn, ρ) with smoothness τ ∈ R, integrability p ∈ N and weight exponent ρ ∈ R,
cf. [1], [53, Chapter 1.2.3], almost surely if and only if τ < −n/2 and ρ < −n/p. Similar
arguments as in [1] show that the realizations of white noise H : S(Ω′)×Ω → R with compact
support Ω′ ⊂ Rn belong to Bτ

p (Rn, ρ) almost surely if and only if τ < −n/2 + n/p and ρ ∈ R.
Consequently, embedding results of weighted Besov spaces imply that the realizations of white
noise with compact support belong to the Sobolev space of fractional order Hα(Rn) almost
surely if α < 0, see [7, Theorem 6.4.4], [29] and [34]. Here, the Sobolev space Hα(Rn) of
fractional order α ∈ R is defined as

Hα(Rn) = {f ∈ S ′(Rn) | ∥f∥Hα(Rn) <∞}

with

∥f∥2Hα(Rn) =

∫
Rn

(1 + ∥ξ∥2Rn)α |Ff(ξ)|2 dξ.

In contrast, approximate continuous white noise Ha : S(Ω′) × Ω → R with compact support
Ω′ ⊂ Rn exhibits a higher regularity. This is shown in the subsequent lemma.

Lemma 3.5. Assume that Ha : S(Rn)× Ω → R is an approximate continuous white noise
with compact support in Ω′ ⊂ Rn. Then, Ha(·, ω) ∈ L2(Rn) for almost all (f.a.a.) ω ∈ Ω. In
addition, if, for some α ∈ R,∫

Rn

(1 + ∥ξ∥2Rn)α
∫
Ω′

∫
Ω′
δa(x− y) e−i(x−y)ξ dx dy dξ <∞,

then Ha(·, ω) ∈ Hα(Rn) f.a.a. ω ∈ Ω.
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Proof. For the expectation of the L2-norm of Ha we obtain

E
(
∥Ha∥2L2(Rn)

)
=

∫
Ω

∫
Ω′
|ha(x, ω)|2 dx dP(ω) =

∫
Ω′
δa(0) dx <∞

by Fubini’s Theorem and the compactness of Ω′. As a result, Ha(·, ω) ∈ H0(Rn) f.a.a. ω ∈ Ω.
We proceed with determining the expectation of the Hα-norm of Ha with α ∈ R. To this

end, observe that the expectation of |Fha(ξ, ·)|2 for fixed ξ ∈ Rn can be rewritten as

E
(
|Fha(ξ, ·)|2

)
=

∫
Ω
Fha(ξ, ω)Fha(ξ, ω) dP(ω)

=

∫
Ω′

∫
Ω′

∫
Ω
ha(x, ω)ha(y, ω) dP(ω) e

−i(x−y)ξ dx dy

=

∫
Ω′

∫
Ω′
δa(x− y) e−i(x−y)ξ dx dy

due to Fubini’s Theorem, which is applicable in this setting as∫
Ω′

∫
Ω′

∫
Ω
|ha(x, ω)ha(y, ω)| dP(ω) dx dy =

∫
Ω′

∫
Ω′

E (|ha(x, ·)ha(y, ·)|) dx dy

≤
∫
Ω′

∫
Ω′

E
(
|ha(x, ·)|2

)1/2 E (|ha(y, ·)|2)1/2 dx dy

=

∫
Ω′

∫
Ω′
δa(0) dx dy <∞.

Consequently,

E
(
∥Ha∥2Hα(Rn)

)
=

∫
Ω

∫
Rn

(1 + ∥ξ∥2Rn)α |Fha(ξ, ω)|2 dξ dP(ω)

=

∫
Rn

(1 + ∥ξ∥2Rn)α
∫
Ω′

∫
Ω′
δa(x− y) e−i(x−y)ξ dx dy dξ <∞

by assumption, which completes the proof.

The last result shows that the smoothness of approximate white noise is solely determined
by the covariance δa. For example, realizations of the stationary Ornstein-Uhlenbeck process
with zero mean and δa(t) =

a
2 exp

−a|t| are almost surely continuous but nowhere differentiable,
cf. [13, Theorem 1.2] in combination with the equivalent characterization of the Ornstein-
Uhlenbeck process therein and [40].

4. Optimized filter function. The aim of this section is to derive optimized filter functions
for Radon data corrupted by white noise. To this end, we consider the approximate FBP
formula

f εL(x, y) =
1

2
B(F−1[AL(σ)Fgε(σ, φ)])(x, y) for (x, y) ∈ R2

with noisy measurements gε : R× [0, π) → R of noise level ε ≥ 0, low-pass filter AL : R → R,
given by

AL(σ) = |σ|W (σ/L) for σ ∈ R,
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fixed bandwidth L > 0 and even window W ∈ L∞(R) with compact support in [−1, 1].
Observe that the assumptions on W imply AL ∈ L2(R) with

∥AL∥2L2(R) =

∫ L

−L
|σ|2 |W (σ/L)|2 dσ ≤ ∥W∥2L∞(R)

∫ L

−L
|σ|2 dσ =

2

3
L3 ∥W∥2L∞(R) <∞.

In addition, if gε ∈ L2(R× [0, π)) has compact support, i.e., there exists an R ≥ 0 with

gε(s, φ) = 0 ∀ |s| > R, φ ∈ [0, π),

the approximate FBP reconstruction f εL ∈ L2(R2) is defined almost everywhere on R2 and can
be rewritten as

f εL =
1

2
B(F−1AL ∗ gε) almost everywhere on R2,

where

(F−1AL ∗ gε)(s, φ) =
∫
R
F−1AL(s− S, φ) gε(S, φ) dS for (s, φ) ∈ R× [0, π).

Moreover, the (distributional) Fourier transform of f εL is given by

Ff εL(σ cos(φ), σ sin(φ)) =W (σ/L)Fgε(σ, φ) for almost all σ ∈ R, φ ∈ [0, π).(4.1)

For details, we refer the reader to [4, Section 8.1].

4.1. Continuous setting. In Section 3, we argued that a suitable model for the measure-
ment noise in X-ray CT is given by approximate additive Gaussian white noise. Based on
this model, we now derive an optimized filter function by minimizing the expectation of the
squared L2-error of the approximate FBP reconstruction f εL. More precisely, as the filter AL

is uniquely determined by its window W , we consider the minimization problem

W ∗ = argmin
supp(W )⊆[−1,1]

E
(
∥f εL − f∥2L2(R2)

)
,

where the real-valued target function f ∈ L2(R2) is assumed to be compactly supported with

supp(f) ⊆ BR(0) for some R > 0.

Note that this assumption is not very restrictive as objects under investigation are usually of
finite extend, which implies that the Radon transform Rf of f belongs to L2(R× [0, π)) with

Rf(s, φ) = 0 ∀ |s| > R, φ ∈ [0, π).

Moreover, we assume that the Radon transform of f is corrupted by additive approximate
white noise Hε

a : S(R2) × Ω → R of noise level ε ≥ 0 with support in Ω′ = [−R,R] × [0, π)
resulting in measured data Gε

a : S(R2)× Ω → R defined as

(4.2) Gε
a(ϕ, ω) =

∫ π

0

∫ R

−R
gεa(s, φ, ω)ϕ(s, φ) ds dφ for ϕ ∈ S(R2), ω ∈ Ω
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with gεa(s, φ, ω) = Rf(s, φ)+hεa(s, φ, ω) for all s ∈ [−R,R], φ ∈ [0, π), ω ∈ Ω, where hεa = ε ha.
Observe that we allow the case ε = 0, which corresponds to noiseless measured data and
degenerate approximate white noise taking the value 0 with probability 1. Moreover, as Rf is
2π-periodic in the angular variable φ, it would be more appropriate to consider the measured
data Gε

a as a function from S(R× S1)× Ω to R. This, however, does not change our results,
but only affects the notation. Lemma 3.5 in combination with Rf ∈ L2(R × [0, π)) implies
that Gε

a(·, ω) ∈ L2(R× [0, π)) for almost all ω ∈ Ω and, thus, F ε
L : S(R2)× Ω → R with

(4.3) F ε
L(ϕ, ω) =

∫
R2

f εL(x, y, ω)ϕ(x, y) d(x, y) for ϕ ∈ S(R2), ω ∈ Ω,

where

f εL(x, y, ω) =
1

2
B(F−1AL(s) ∗ gεa(s, φ, ω))(x, y) for almost all (x, y) ∈ R2,

is well-defined with F ε
L(·, ω) ∈ L2(R2) for almost all ω ∈ Ω. Moreover, F ε

L(ϕ, ·) : Ω → R is a
random variable for fixed ϕ ∈ Ω. In what follows, we identify F ε

L with f εL as well as Gε
a with

gεa to improve readability.
With these preliminaries, we now calculate the expectation of the squared L2(R2)-norm

of the error f εL − f .

Lemma 4.1. Let f ∈ L2(R2) with supp(f) ⊆ BR(0) for fixed R > 0 and AL ∈ L2(R) for
L > 0. Moreover, assume that the measured data Gε

a : S(R2)× Ω → R is defined as in (4.2).
Then,

E
(
∥f εL − f∥2L2(R2)

)
=

L2

4π2

∫
R
|σ|
[
(W (σ)− 1)2

∫ π

0
|F(Rf)(Lσ, φ)|2 dφ

+ π ε2W (σ)2 E
(
|Fha(Lσ, 0, ·)|2

) ]
dσ

with

E
(
|Fha(Lσ, 0, ·)|2

)
=

∫ R

−R

∫ R

−R
δa(s− ŝ, 0) e−i(s−ŝ)Lσ ds dŝ.

Proof. Let us start with determining the L2(R2)-norm of f εL(·, ω) − f with fixed ω ∈ Ω.
To this end, recall that f εL(·, ω) ∈ L2(R2) for almost all ω ∈ Ω and f ∈ L2(R2) by assumption.
As a result, the Rayleigh-Plancherel theorem implies

∥f εL(·, ω)− f∥2L2(R2) =
1

4π2
∥F(f εL(·, ω))−Ff∥2L2(R2)

=
1

4π2

∫ π

0

∫
R
|[F(f εL(·, ·, ω))−Ff ](σ cos(φ), σ sin(φ))|2 |σ| dσ dφ

for almost all ω ∈ Ω by transitioning to polar coordinates. Observe that f ∈ L1(R2) as
f ∈ L2(R2) with supp(f) ⊆ BR(0) and, as a consequence, the classical Fourier slice theorem

F(Rf)(σ, φ) = Ff(σ cos(φ), σ sin(φ)) ∀ σ ∈ R, φ ∈ [0, π)
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and (4.1) yield

∥f εL(·, ω)− f∥2L2(R2) =
1

4π2

∫ π

0

∫
R
|W (σ/L)Fgεa(σ, φ, ω)−F(Rf)(σ, φ)|2 |σ| dσ dφ

=
1

4π2

∫ π

0

∫
R
|σ|
[
W (σ/L)2 |Fgεa(σ, φ, ω)|2 −W (σ/L)F(Rf)(σ, φ)Fgεa(σ, φ, ω)

−W (σ/L)F(Rf)(σ, φ)Fgεa(σ, φ, ω) + |F(Rf)(σ, φ)|2
]
dσ dφ.

By exploiting gεa = Rf + hεa with hεa = ε ha, we obtain

∥f εL(·, ω)− f∥2L2(R2) =
1

4π2

∫ π

0

∫
R
|σ|
[
(W (σ/L)− 1)2 |F(Rf)(σ, φ)|2 +W (σ/L)2 |Fhεa(σ, φ, ω)|2

+
(
W (σ/L)2 −W (σ/L)

) [
F(Rf)(σ, φ)Fhεa(σ, φ, ω)

+ F(Rf)(σ, φ)Fhεa(σ, φ, ω)
]]

dσ dφ

for almost all ω ∈ Ω. Now, for the expectation of ∥f εL − f∥2L2(R2) : Ω → R follows that

E
(
∥f εL − f∥2L2(R2)

)
=

∫
Ω
∥f εL(·, ω)− f∥2L2(R2) dP(ω)

=
1

4π2

∫
Ω

∫ π

0

∫
R
|σ|
[
(W (σ/L)− 1)2 |F(Rf)(σ, φ)|2

+W (σ/L)2 |Fhεa(σ, φ, ω)|2

+
(
W (σ/L)2 −W (σ/L)

) [
F(Rf)(σ, φ)Fhεa(σ, φ, ω)

+ F(Rf)(σ, φ)Fhεa(σ, φ, ω)
]]

dσ dφdP(ω)

=
1

4π2

∫ π

0

∫
R
|σ|
[
(W (σ/L)− 1)2 |F(Rf)(σ, φ)|2

+W (σ/L)2 E(|Fhεa(σ, φ, ·)|2)

+
(
W (σ/L)2 −W (σ/L)

) [
F(Rf)(σ, φ) E

(
Fhεa(σ, φ, ·)

)
+ F(Rf)(σ, φ) E(Fhεa(σ, φ, ·))

]]
dσ dφ.

The expectation of Fhεa(σ, φ, ·) is zero as

E(Fhεa(σ, φ, ·)) = ε

∫ R

−R
E(ha(s, φ, ·)) e−isσ ds = 0 for all s ∈ R, φ ∈ [0, π)

due to the definition of ha and Fubini’s Theorem, which also implies that

E
(
Fhεa(σ, φ, ·)

)
= E(Fhεa(σ, φ, ·)) = 0 for all s ∈ R, φ ∈ [0, π).
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Similarly, for the variance of Fhεa(σ, φ, ·) follows that

E(|Fhεa(σ, φ, ·)|2) = ε2 E(|Fha(σ, φ, ·)|2)

= ε2
∫ R

−R

∫ R

−R
E[ha(s, φ, ·)ha(ŝ, φ, ·)] e−i(s−ŝ)σ ds dŝ

= ε2
∫ R

−R

∫ R

−R
δa(s− ŝ, 0) e−i(s−ŝ)σ ds dŝ

for all σ ∈ R and φ ∈ [0, π). As a result, we finally obtain

E
(
∥f εL − f∥2L2(R2)

)
=

L2

4π2

∫
R
|σ|
[
(W (σ)− 1)2

∫ π

0
|F(Rf)(Lσ, φ)|2 dφ

+ π ε2W (σ)2
∫ R

−R

∫ R

−R
δa(s− ŝ, 0) e−i(s−ŝ)Lσ ds dŝ

]
dσ,

which completes the proof.

We now proceed to determining a window function W ∗ ∈ L∞(R) with W ∗(σ) = W ∗(−σ)
for all σ ∈ R and supp(W ∗) ⊆ [−1, 1] that minimizes

E
(
∥f εL − f∥2L2(R2)

)
=

L2

4π2

∫
R
k(σ,W (σ)) dσ

with k : R× R → R defined as

(4.4) k(σ,w) = |σ|(w − 1)2
∫ π

0
|F(Rf)(Lσ, φ)|2 dφ+ π ε2 |σ|w2 E

(
|Fha(Lσ, 0, ·)|2

)
for σ,w ∈ R. To this end, we minimize k(σ, ·) pointwise for fixed σ ∈ R and use the mono-
tonicity of the integral to obtain a candidate for W ∗. Since the window W is assumed to have
compact support in [−1, 1], we obtain

(4.5) E
(
∥f εL − f∥2L2(R2)

)
=

L2

4π2

∫ 1

−1
k(σ,W (σ)) dσ + c,

where c ∈ R does not depend on W , and, therefore, it suffices to consider k as a function on
[−1, 1] × R. Hence, in the following lemma, we derive a formula for the global minimizer of
k(σ, ·) : R → R for σ ∈ [−1, 1].

Lemma 4.2. Let f ∈ L2(R2) with supp(f) ⊆ BR(0) for R > 0 and let Hε
a : S(R2)×Ω → R

be approximate white noise with support in [−R,R] × [0, π) and noise level ε ≥ 0. Then, for
σ ∈ [−1, 1], the global minimizer w∗

σ ∈ R of k(σ, ·) : R → R in (4.4) is given by

w∗
σ =


∫ π
0 |F(Rf)(Lσ, φ)|2 dφ∫ π

0 |F(Rf)(Lσ, φ)|2 dφ+ π ε2 E (|Fha(Lσ, 0, ·)|2)
for σ ∈ D

1 for σ ∈ [−1, 1] \D
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with

D =
{
σ ∈ [−1, 1] \ {0}

∣∣∣ ε2 E
(
|Fha(Lσ, 0, ·)|2

)
> 0
}
,

which is unique for σ ∈ D.

Proof. The proof can be divided into three cases:

Case σ ∈ D: The partial derivative of k w.r.t. the second variable w is given by

∂k

∂w
(σ,w) = 2 |σ| (w − 1)

∫ π

0
|F(Rf)(Lσ, φ)|2 dφ+ 2π ε2 |σ|w E

(
|Fha(Lσ, 0, ·)|2

)
for w ∈ R

and, thus, the necessary condition of a minimum w∗
σ of k(σ, ·) reads

∂k

∂w
(σ,w∗

σ) = 0 ⇐⇒ w∗
σ =

∫ π
0 |F(Rf)(Lσ, φ)|2 dφ∫ π

0 |F(Rf)(Lσ, φ)|2 dφ+ π ε2 E (|Fha(Lσ, 0, ·)|2)
.

Moreover, the second partial derivative

∂2k

∂w2
(σ,w) = 2 |σ|

∫ π

0
|F(Rf)(Lσ, φ)|2 dφ+ 2π ε2 |σ| E

(
|Fha(Lσ, 0, ·)|2

)
for w ∈ R

is strictly larger than zero for all σ ∈ D so that k(σ, ·) is strictly convex and w∗
σ is the unique

global minimizer of k(σ, ·) on R.
Case σ = 0: In this case, we have k(σ,w) = 0 for all w ∈ R and, consequently, w∗

σ = 1 is a
global minimizer of k(σ, ·) on R.
Case σ ∈ [−1, 1] \ (D ∪ {0}): In this setting, k(σ,w) reads

k(σ,w) = |σ| (w − 1)2
∫ π

0
|F(Rf)(Lσ, φ)|2 dφ for w ∈ R

with k(σ,w) ≥ 0 for all w ∈ R and k(σ, 1) = 0. Therefore, w∗
σ = 1 is a global minimizer.

The preceding lemma, in combination with the monotonicity property of the integral,
shows that a candidate for an optimal window function W ∗ : R → R with supp(W ∗) ⊆ [−1, 1]
is given by

W ∗(σ) =


∫ π
0 |F(Rf)(Lσ, φ)|2 dφ∫ π

0 |F(Rf)(Lσ, φ)|2 dφ+ π ε2 E (|Fha(Lσ, 0, ·)|2)
for σ ∈ D

1 for σ ∈ [−1, 1] \D
0 else

(4.6)

with

D =
{
σ ∈ [−1, 1] \ {0}

∣∣∣ ε2 E
(
|Fha(Lσ, 0, ·)|2

)
> 0
}
.

It remains to prove that the candidate W ∗ is indeed a window, i.e., W ∗ ∈ L∞(R) is even.
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Lemma 4.3. Assume that f ∈ L2(R2) is real-valued with supp(f) ⊆ BR(0) for R > 0 and
let Hε

a : S(R2)×Ω → R be approximate white noise with support in [−R,R]× [0, π) and noise
level ε ≥ 0. Then, W ∗ : R → R in (4.6) is well-defined, even and in L∞(R).

Proof. First, observe that∫ π

0
|F(Rf)(Lσ, φ)|2 dφ =

∫ π

0
|Ff(Lσ cos(φ), Lσ sin(φ))|2 dφ ≤ π ∥Ff∥2∞ <∞

and

E
(
|Fha(Lσ, 0, ·)|2

)
≤
∫ R

−R

∫ R

−R
E (|ha(s, 0, ·)ha(ŝ, 0, ·)|) ds dŝ

≤
∫ R

−R

∫ R

−R
E
(
|ha(s, 0, ·)|2

)1/2 E (|ha(ŝ, 0, ·)|2)1/2 ds dŝ = 4R2 δa(0) <∞

for all σ ∈ R due to the Fourier slice theorem, the Riemann-Lebesgue lemma, Fubini’s theorem
and Cauchy Schwarz’s inequality. In addition,

|W ∗(σ)| =
∫ π
0 |F(Rf)(Lσ, φ)|2 dφ∫ π

0 |F(Rf)(Lσ, φ)|2 dφ+ π ε2 E (|Fha(Lσ, 0, ·)|2)
≤ 1 for σ ∈ D

andW ∗(σ) = 1 for σ ∈ [−1, 1]\D. Consequently, W ∗ is well-defined for all σ ∈ R and satisfies
W ∗ ∈ L∞(R). In order to prove that W ∗ is an even function, note that

|Fg(σ, φ)|2 =
∣∣∣ ∫

R
g(s, φ) e−isσ ds

∣∣∣2 = ∣∣∣ ∫
R
g(s, φ) e−is(−σ) ds

∣∣∣2 = |Fg(−σ, φ)|2

for all real-valued g ∈ L2(R× [0, π)) and all φ ∈ [0, π). This implies that

|F(Rf)(Lσ, φ)|2 = |F(Rf)(−Lσ, φ)|2 and E
(
|Fha(Lσ, 0, ·)|2

)
= E

(
|Fha(−Lσ, 0, ·)|2

)
for all σ ∈ R and φ ∈ [0, π). Consequently, we have σ ∈ D if and only if −σ ∈ D and
W ∗(σ) =W ∗(−σ) for all σ ∈ R.

The above Lemmata show that W ∗ is an optimized window function for the approximate
FBP reconstruction in the sense that it minimizes the expectation of the squared L2(R2)-norm
of f εL − f for window functions with compact support in [−1, 1]. This is summarized in the
following theorem.

Theorem 4.4 (Optimized filter with compact support). Assume that f ∈ L2(R2) is real-
valued with supp(f) ⊆ BR(0) for fixed R > 0. In addition, assume that the Radon transform
of f is corrupted by additive approximate white noise Hε

a : S(R2) × Ω → R with support in
[−R,R]× [0, π) and noise level ε ≥ 0, i.e., the measured data is given by Gε

a : S(R2)×Ω → R
with

Gε
a(ϕ, ω) =

∫ π

0

∫ R

−R
gεa(s, φ, ω)ϕ(s, φ) ds dφ for ϕ ∈ S(R2), ω ∈ Ω,
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where gεa(s, φ, ω) = Rf(s, φ) + ε ha(s, φ, ω) for all s ∈ [−R,R], φ ∈ [0, π), ω ∈ Ω. Then,
A∗

L : R → R, defined by

A∗
L(σ) =


|σ|
∫ π
0 |F(Rf)(σ, φ)|2 dφ∫ π

0 |F(Rf)(σ, φ)|2 dφ+ π ε2 E (|Fha(σ, 0, ·)|2)
for σ ∈ DL

|σ| for σ ∈ [−L,L] \DL

0 else

with

DL =
{
σ ∈ [−L,L] \ {0}

∣∣∣ ε2 E
(
|Fha(σ, 0, ·)|2

)
> 0
}

and

E
(
|Fha(σ, 0, ·)|2

)
=

∫ R

−R

∫ R

−R
δa(s− ŝ, 0) e−i(s−ŝ)σ ds dŝ,

is the optimized filter function with compact support that minimizes

E
(
∥f εL − f∥2L2(R2)

)
for filter functions AL(·) = | · |W (·/L) with supp(AL) ⊆ [−L,L] and fixed L > 0.

Proof. The statement is a direct consequence of Lemmata 4.1, 4.2, 4.3, the monotonicity
property of the integral and the identity A∗

L(·) = | · |W ∗(·/L).

Observe that the optimized filter function depends on the covariance δa of ha, the noise
level ε and the true Radon transform Rf of the target function f . The latter, however, is
typically not known in applications, which makes the filter function difficult to use. We will
address this in Chapter 5, where we present a possible adaptation of the above filter to the
case of unknown true data.

In the case of noise-free measurement data, i.e., ε = 0, the optimized filter function reduces
to

A∗
L(σ) =

{
|σ| for σ ∈ [−L,L]
0 else.

Consequently, in this case, the optimized filter function is equal to the Ram-Lak filter. Similar
observations were made in [4, 5].

To close this section, we consider the example of the above mentioned stationary Ornstein-
Uhlenbeck process with zero mean and δa(t) = a

2 exp
−a |t| with t ∈ R, which we extend to

R× [0, π) by setting

δa(t, φ) =
a2

4
exp−a |t| exp−a |φ| for t ∈ R, φ ∈ [0, π).
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Standard computations then give

E
(
|Fha(σ, 0, ·)|2

)
= a2

(
aR

a2 + σ2
+

1
2

(
e−2aR cos(2Rσ)− 1

) (
a2 − σ2

)
− aσe−2aR sin(2Rσ)

a4 + 2a2σ2 + σ2

)

for all σ ∈ R and a > 0. Hence, in the limit a→ ∞ we obtain

E
(
|Fha(σ, 0, ·)|2

) a→∞−−−→ ∞ for all σ ∈ R

and the corresponding optimized filter function A∗
L(σ) converges to 0 for all σ ∈ R and ε > 0.

This behaviour is reasonable as Ha converges weakly to white noise for a→ ∞, cf. Lemma 3.4,
with E(ha(x, ·)2) = δa(0)

a→∞−−−→ ∞. In this sense, white noise has an infinite variance and
corresponds to a process requiring an infinite amount of energy as already highlighted in
Section 3. To compensate for this, the filter function must suppress all frequencies and, thus,
A∗

L ≡ 0. The same behaviour can be observed for a larger variety of covariance functions. To
this end, consider fixed ε2 > 0 and assume that the covariance δa : R2 → R of the approximate
white noise is of the form

δa(s, φ) = a2 ϕ(as)ϕ(aφ) for s, φ ∈ R,

where ϕ ∈ L1(R) with ϕ(x) ≥ 0 for all x ∈ R, ϕ(0) > 0 and
∫
R ϕ(x) dx = 1. Then, δa is a

Dirac sequence and

E
(
|Fha(σ, 0, ·)|2

)
= a2 ϕ(0)

∫ R

−R

∫ R

−R
ϕ(a(s− ŝ)) e−i(s−ŝ)σ ds dŝ for all σ ∈ R.

Observe that ∫ R

−R

∫ R

−R
aϕ(a(s− ŝ)) e−i(s−ŝ)σ dsdŝ

a→∞−−−→ 2R > 0

uniformly for σ ∈ [−L,L], which follows from Lebesgue’s dominated convergence theorem,
the uniform convergence of the complex exponential function on any bounded interval and
the properties of ϕ. As a result, there exists an a0 > 0 with E

(
|Fha(σ, 0, ·)|2

)
> 0 for all

σ ∈ [−L,L] and all a ≥ a0. Consequently,

A∗
L(σ) =

|σ|
∫ π
0 |F(Rf)(σ, φ)|2 dφ∫ π

0 |F(Rf)(σ, φ)|2 dφ+ π ε2 E (|Fha(σ, 0, ·)|2)
for σ ∈ [−L,L], a ≥ a0,

and in the limit a→ ∞, we obtain

A∗
L(σ)

a→∞−−−→ 0 for all σ ∈ R,

which follows from

E
(
|Fha(σ, 0, ·)|2

)
= aϕ(0)

∫ R

−R

∫ R

−R
aϕ(a(s− ŝ)) e−i(s−ŝ)σ ds dŝ

a→∞−−−→ ∞.
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4.2. Discrete setting. The optimized filter function derived in the last section is based
on the assumption that the measured data is known for every line in the plane. In real-world
applications, however, this is not the case, since only finitely many measurements are available.
Consequently, the approximate FBP formula and with this the optimized filter function are
not applicable in these settings and need to be adapted to discrete measurement data. For
simplicity, we assume that the data is measured using a parallel scanning geometry. To be
more precise, the discrete measured data gεD : {−M, . . . ,M} × {0, . . . , Nφ − 1} ×Ω → R with
M, Nφ ∈ N is given by

gεD(i, j, ω) = Rf(si, φj) + hεa(si, φj , ω) for −M ≤ i ≤M, 0 ≤ j ≤ Nφ − 1, ω ∈ Ω

with si = ih for h > 0, φj = j π/Nφ and gεa : [−R,R] × [0, π) × Ω → R as in (4.2), where the
radial discretization is chosen to cover the entire interval, i.e., Mh ≥ R. Moreover, we assume
that ha is sufficiently close to white noise such that gεD(i, j, ·) : Ω → R and gεD(k, l, ·) : Ω → R
appear to be uncorrelated if i ̸= k or j ̸= l. More precisely, the covariance of ha has to satisfy

(4.7) E (ha(si, φj , ·)ha(sk, φl, ·)) = δa(si − sk, φj − φl) = 0 if i ̸= k or j ̸= l

for all −M ≤ i, k ≤M and 0 ≤ j, l ≤ Nφ − 1. This is for example the case if

δa(s, φ) =

{
a2 if |s| ≤ 1

2a , |φ| ≤
1
2a ,

0 else

with a > max
(

1
2h ,

Nφ

2π

)
. In this setting, the discrete measured data gεD can be equivalently

represented as

gεD(i, j, ω) = Rf(si, φj) + ξεai,j(ω) for −M ≤ i ≤M, 0 ≤ j ≤ Nφ − 1, ω ∈ Ω

with independent and identically distributed Gaussian random variables ξεai,j : Ω → R with

expectation zero and variance ε2a = ε2 δa(0, 0), which corresponds to the classical definition of
discrete additive Gaussian white noise in the literature. Hence, in the following we use this
more common definition of gεD. In addition, we assume that the target function f : R2 → R
is real-valued and bounded with

supp(f) ⊆ BR(0) for some R > 0.

To apply the approximate FBP formula to discrete measurement data, we follow a standard
approach [36] and discretize (4.3) using the composite trapezoidal rule, analogous to [5, 6],
resulting in

(4.8) f εL,D(x, y, ω) =
1

2
BD

(
F−1AL ∗D gεD(·, ·, ω)

)
(x, y) for (x, y) ∈ R2, ω ∈ Ω

with

BD

(
F−1AL ∗D gεD(·, ·, ω)

)
(x, y) =

1

Nφ

Nφ−1∑
j=0

(F−1AL ∗D gεD(·, ·, ω))(x cos(φj) + y sin(φj), φj)
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for (x, y) ∈ R2 and

(F−1AL ∗D gεD(·, ·, ω))(s, φj) = h
M∑

i=−M

F−1AL(s− si) g
ε
D(i, j, ω)

for s ∈ R and 0 ≤ j ≤ Nφ − 1. Note that f εL,D is well-defined with f εL,D(·, ·, ω) ∈ L2
loc(R2) for

all ω ∈ Ω if the filter function AL ∈ L2(R) has finite bandwidth L > 0.
Moreover, we need to discretize the optimized filter function derived in the last section.

For this, we again use the composite trapezoidal rule, which leads to

∫ π

0
|F(Rf)(σ, φ)|2 dφ ≈ π

Nφ

Nφ−1∑
j=0

|FD(Rf)(σ, j)|2 for σ ∈ R

with

FD(Rf)(σ, j) = h
M∑

i=−M

Rf(si, φj) e
−isiσ for σ ∈ R, 0 ≤ j ≤ Nφ − 1,

and

Fha(σ, 0, ω) ≈ FDha(σ, 0, ω) = h
M∑

i=−M

ha(si, 0, ω) e
−isiσ for σ ∈ R, ω ∈ Ω

with

E
(
|FDha(σ, 0, ·)|2

)
= h2

M∑
i=−M

M∑
j=−M

E(ha(si, 0, ·)ha(sj , 0, ·)) e−i(si−sj)σ

= h2
M∑

i=−M

δa(0, 0) = h2 (2M + 1) δa(0, 0) for all σ ∈ R,

where we used (4.7). Replacing the continuous expressions in Theorem 4.4 with the discretized
expressions yields an optimized filter for discrete measurements in parallel beam geometry.

Definition 4.5 (Optimized filter function with compact support for discrete measurements).
For a real-valued, bounded function f : R2 → R with supp(f) ⊆ BR(0) for R > 0 and discrete
measurements gεD : {−M, . . . ,M} × {0, . . . , Nφ − 1} × Ω → R for fixed M, Nφ ∈ N, given by

gεD(i, j, ω) = Rf(si, φj) + ξεai,j(ω)

with si = ih for h > 0 so that Mh ≥ R, φj = j π/Nφ and discrete Gaussian white noise ξεa,
the optimized filter A∗

L,D : R → R of bandwidth L > 0 is defined by

A∗
L,D(σ) =


|σ| 1

Nφ

∑Nφ−1
j=0 |FD(Rf)(σ, j)|2

1
Nφ

∑Nφ−1
j=0 |FD(Rf)(σ, j)|2 + h2 ε2a (2M + 1)

for σ ∈ [−L,L]

0 for σ ̸∈ [−L,L].
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Note that the optimized filter for discrete measurements depends on the target function
f , the discretization parameters M , Nφ and h as well as on the variance ε2a, which imposes
practical limitations on the applicability of A∗

L,D because the objective function and variance
are rarely known. We address this issue in the next chapter. As in the continuous setting, the
optimized filter A∗

L,D for noise-free discrete measurements coincides with the Ram-Lak filter.
In contrast to the optimized filter function for continuous measurement data derived in

Theorem 4.4, A∗
L,D does not minimize

(4.9) E
(
∥f εL,D − f∥2L2(K)

)
with compact K ⊂ R2, which is illustrated in the following remark.

Remark 4.6. The reconstruction error can be bounded above by

∥f εL,D(·, ·, ω)− f∥2L2(K) ≤
∥∥f εL,D(·, ·, ω)− 1/2BD

(
F−1

(
| · |1[−L,L](·)FD(Rf)

))∥∥2
L2(K)

+
∥∥1/2BD

(
F−1

(
| · |1[−L,L](·)FD(Rf)

))
− f

∥∥2
L2(K)

for fixed ω ∈ Ω and compact K ⊂ R2. The first summand can be interpreted as a combination
of the error induced by the filter function AL and the measurement process. In contrast, the
second summand can be considered as an approximation error, which is independent of the
chosen filter function. The first summand can be bounded above by∥∥f εL,D(·, ·, ω)− 1/2BD

(
F−1

(
| · |1[−L,L](·)FD(Rf)

))∥∥2
L2(K)

≤ diam(K)2
2LNφ

16π2N2
φ

Nφ−1∑
j=0

∫ L

−L
|σ|2 |W (σ/L)FDg

ε
D(σ, j, ω)−FD(Rf)(σ, φj)|2 dσ.

Now, the optimized filter function for discrete measurement data defined in Definition 4.5
minimizes this upper bound, as can be shown by arguments similar to those in Section 4.1.
To derive a filter function that minimizes (4.9), one needs a different optimization approach
that is more involved since the relations used in the continuous setting do not carry over to
the discrete case.

5. Numerical Experiments. In this section, we finally present selected numerical exper-
iments to illustrate and validate our theoretical findings. To this end, recall that we aim at
recovering the target function f ∈ L2(R2) with supp(f) ⊆ BR(0) from noisy measurements
gεD : {−M, . . . ,M} × {0, . . . , Nφ − 1} × Ω → R given by

gεD(i, j, ω) = Rf(si, φj) + ξεai,j(ω) for −M ≤ i ≤M, 0 ≤ j ≤ Nφ − 1, ω ∈ Ω

with si = ih for h ≥ R/M, φj = j π/Nφ and noise ξεai,j : Ω → R with expectation zero and

variance ε2a, which is assumed to be known or can be estimated. For simplicity, by rescaling
the noise level we set εa = ε. Moreover, we from now on suppress the dependence on ω ∈ Ω
and simply write

gεD(i, j) = Rf(si, φj) + ξεi,j for −M ≤ i ≤M, 0 ≤ j ≤ Nφ − 1.
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Figure 1. Selection of classical low-pass filters used in our numerical experiments.

We wish to apply the discretized approximate FBP formula (4.8), i.e.,

f εL,D =
1

2
BD

(
F−1AL ∗D gεD

)
.

The evaluation of f εL,D, however, requires the computation of the values

(F−1AL ∗D gεD)(x cos(φj) + y sin(φj), φj) ∀ 0 ≤ j ≤ N − 1

for each reconstruction point (x, y) ∈ R2, which is computationally expensive. To reduce the
computational costs, a standard approach is to evaluate the function

s 7→ (F−1AL ∗D gεD)(s, φj)

only at the points s = sl, l ∈ I, for a sufficiently large index set I ⊂ Z and interpolate its
function value for s = x cos(φj) + y sin(φj) using an interpolation method I. This leads us to
the discrete FBP reconstruction formula

(5.1) fFBP =
1

2
BD

(
I[F−1AL ∗D gεD]

)
,

where linear or cubic spline interpolation is typically used depending on the regularity of f .
Note, however, that the errors incurred by the utilized interpolation method are not taken into
account in our theoretical derivation of optimized filter functions. Moreover, we choose the
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Table 1
Window functions of classical low-pass filters, where W (σ) = 0 for all |σ| > 1 in all cases.

Name W (σ) for |σ| ≤ 1 Parameter

Ram-Lak 1 -
Shepp-Logan sinc(πσ/2) -
Cosine cos(πσ/2) -
Hamming β + (1− β) cos(πσ) β ∈ [1/2, 1]

bandwidth L > 0 of the filter AL and the discretization parameters h > 0, M ∈ N optimally
depending on the number of angles Nφ ∈ N according to [36] via

M =

⌊
Nφ

π

⌋
, L =

πM

R
, h =

π

L
,

where we assume that supp(f) ⊆ BR(0) with R ∈ N.
The application of our optimized filter for discrete measurements from Definition 4.5,

A∗
L,D(σ) =


|σ| 1

Nφ

∑Nφ−1
j=0 |FD(Rf)(σ, j)|2

1
Nφ

∑Nφ−1
j=0 |FD(Rf)(σ, j)|2 + h2 ε2 (2M + 1)

for σ ∈ [−L,L]

0 for σ ̸∈ [−L,L],

requires the exact knowledge of the noiseless Radon samples Rf(si, φj) for all i = −M, . . . ,M
and j = 0, . . . , Nφ − 1. As this information is typically not available in applications, we
investigate two options to overcome this bottleneck. In the first approach, we simply replace
the Radon samples Rf(si, φj) by the available measurements gεD(i, j) leading to the filter
function

Aε
L,D(σ) =


|σ| 1

Nφ

∑Nφ−1
j=0 |FDg

ε
D(σ, j)|2

1
Nφ

∑Nφ−1
j=0 |FDgεD(σ, j)|2 + h2 ε2 (2M + 1)

for σ ∈ [−L,L]

0 for σ ̸∈ [−L,L].

In the second approach, we first convolve the given measurements gεD with a Wiener filter,
which minimizes the expected squared error between convolved data ĝεD and true data Rf .
Thereon, we replace the Radon samples Rf(si, φj) by the denoised measurements ĝεD(i, j)
yielding the filter function

Âε
L,D(σ) =


|σ| 1

Nφ

∑Nφ−1
j=0 |FD(ĝ

ε
D)(σ, j)|2

1
Nφ

∑Nφ−1
j=0 |FD(ĝεD)(σ, j)|2 + h2 ε2 (2M + 1)

for σ ∈ [−L,L]

0 for σ ̸∈ [−L,L],

where the kernel size of the Wiener filter acts as hyperparameter. Let us stress that alter-
native denoising techniques can be applied like, e.g., data-driven approaches based on neural
networks, which is beyond the scope of this work and asks for more in-depth future research.
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Figure 2. Phantoms used in our numerical experiments along with their sinograms (Radon data).
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Figure 3. Noisy sinograms of the Shepp-Logan phantom with different noise levels.

In our numerical experiments we compare the reconstruction performance of our optimized
filter function with classical low-pass filters, which are illustrated in Figure 1 and whose
window functions are listed in Table 1, as well as the recently proposed filters from [25, 42, 43].

5.1. Shepp-Logan phantom. In a first set of numerical simulations, we make use of the
popular Shepp-Logan phantom, proposed in [48] as a simplistic model of a human head section.
It consists of ten ellipses of different sizes, eccentricities and locations leading to a piecewise
constant attenuation function fSL ∈ L2(R2) with supp(fSL) ⊆ B1(0), whose Radon transform
can be computed analytically, cf. Figure 2 (a)-(b). The noisy measurements gεD(i, j) are
simulated by adding white Gaussian noise with variance ε2 to the Radon samples RfSL(si, φj),
where ε = pnoisemRfSL with pnoise ∈ {0.05, 0.1, 0.15} depends on the arithmetic mean

mRfSL =
1

(2M + 1)Nφ

M∑
i=−M

Nφ−1∑
j=0

|RfSL(si, φj)|,

see Figure 3 for an illustration of the resulting noisy sinograms.
The results of our numerical experiments are depicted in Figure 4, where we plot the mean

squared error (MSE) in logarithmic scale and the structural similarity index measure (SSIM)
from [58] of the FBP reconstruction on an equidistant grid of 1024× 1024 pixels as a function
of the number of angles Nφ ∈ {90, 180, 270, 360, 450, 540, 630, 720} for various filter functions.
To account for the randomness, we computed averages over 50 reconstructions with different
noise realizations. Involved filter parameters were optimized based on 20 independent samples.
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Figure 4. Plots of the MSE and SSIM of FBP reconstructions for the Shepp-Logan phantom.
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Figure 5. Reconstructions of Shepp-Logan phantom from noisy Radon data (pnoise = 0.1, Nφ = 360).
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In terms of MSE, we observe that for the classical filters used (Ram-Lak, Shepp-Logan,
Cosine, Hamming) the error first decreases, but then increases again with increasing Nφ. In
contrast to this, for the MR-FBPGM method from [42], the SIRT-FBP method from [43] and
the filter from [25], which we refer to as ERM-FBP method, as well as for our proposed filter
functions A∗

L,D and Âε
L,D, the error continues to decrease for all chosen Nφ. The MR-FBP

method from [42] and our simple workaround Aε
L,D give decent results for small noise, but also

show an increasing error for increasing Nφ already for moderate noise. In total, we observe
that our filters A∗

L,D and Âε
L,D perform best, which was expected since the MSE is the discrete

counterpart of the objective we optimized in the derivation of our filter function. Moreover,
we see that the difference in performance increases with increasing pnoise ∈ {0.05, 0.1, 0.15}.
For illustration, Figure 6 shows A∗

L,D, A
ε
L,D and Âε

L,D for the noisy Shepp-Logan sinogram
with Nφ ∈ {90, 180, 360} and pnoise ∈ {0.05, 0.1, 0.15}.

In terms of SSIM, we observe that for the classical filters, our simple workaround Aε
L,D,

the MR-FBP and MR-FBPGM method as well as the SIRT-FBP method the reconstruction
quality decreases with increasingNφ. For the ERM-FBP method as well as our optimized filter
A∗

L,D, however, the SSIM increases with increasing Nφ. For its variant Âε
L,D the behaviour

of the SSIM depends on the amount of noise. For small noise, the reconstruction quality
increases with increasing Nφ, but for moderate and high noise, the SSIM begins to decrease
again for large values of Nφ. In total, we observe that now ERM-FBP performs best, closely
followed by our filters A∗

L,D and Âε
L,D. Note, however, that ERM-FBP requires access to

training data comprising noise-free sinograms and noise samples, whereas our filters can be
used off the shelf. As proposed in [25], in our simulations the ERM-FBP filter was trained on
10000 random ellipse phantoms and different realizations of noise. For illustration, Figure 5
shows the different reconstructions from noisy Radon data with pnoise = 0.1 and Nφ = 360.

5.2. Modified Shepp-Logan phantom. To study the generalization abilities of the filters,
in our second set of numerical simulations we consider a modified version of the Shepp-Logan
phantom comprising smoother as well as rougher components, see Figure 2 (c)-(d). To be
more precise, we replace the characteristic function

χB1(0)(x, y) =

{
1 if x2 + y2 ≤ 1

0 if x2 + y2 > 1

in the definition of the classical Shepp-Logan phantom by

pν(x, y) =

{
(1− x2 − y2)ν if x2 + y2 ≤ 1

0 if x2 + y2 > 1

with smoothness parameter ν = 1.5 and add two rectangles of different sizes. Thereon, we
rescale the resulting attenuation function fMSL ∈ L2(R2) with supp(fMSL) ⊆ B1(0) so that its
Radon transform RfMSL has the same arithmetic mean as RfMSL, i.e., mRfMSL

= mRfSL .
To investigate the effect of underestimating the amount of noise, the noisy measurements

gεD(i, j) are simulated by adding white Gaussian noise with variance ε2 to RfMSL(si, φj),
where ε is 20% larger than expected, i.e., ε = 1.2 · pnoisemRfMSL

with pnoise ∈ {0.05, 0.1, 0.15}
and we omit the factor 1.2 in the definition of our proposed filters A∗

L,D, Â
ε
L,D and Aε

L,D.
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Figure 6. Plots of the optimized filter functions A∗
L,D, Aε

L,D and Âε
L,D for the noisy Shepp-Logan sinogram

with Nφ ∈ {90, 180, 360} and pnoise ∈ {0.05, 0.1, 0.15}.

The results of our numerical experiments are depicted in Figure 7, where we use the same
filter parameters as in the first set of experiments for the Shepp-Logan phantom in Section 5.1.
In terms of MSE, we observe that for the classical filters, the MR-FBP method as well as the
MR-FBPGM method the error increases with increasing Nφ. The same is true for our simple
workaround Aε

L,D, which shows that this choice cannot deal with underestimated noise levels.

For Âε
L,D the behaviour depends on the amount of noise. For small noise, the MSE increases

with increasing Nφ, but for moderate and high noise, the MSE begins to increase again for
large values ofNφ. The SIRT-FBP method only slightly decreases with increasingNφ, whereas
ERM-FBP and A∗

L,D show the best results with A∗
L,D outperforming ERM-FBP. However, the

difference in performance decreases with increasing pnoise.
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Figure 7. Plots of the MSE and SSIM of FBP reconstructions for the modified Shepp-Logan phantom.
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Figure 8. Reconstructions of modified Shepp-Logan phantom from noisy Radon data (pnoise = 0.1, Nφ = 360).
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In terms of SSIM, we again observe that for the classical filters, our simple workaround
Aε

L,D, the MR-FBP and MR-FBPGM method as well as the SIRT-FBP method the SSIM

decreases with increasing Nφ. Also for Âε
L,D the reconstruction quality deteriorates for large

values of Nφ. In contrast to this, for the ERM-FBP method as well as our optimized filter
A∗

L,D the SSIM increases with increasing Nφ, where now A∗
L,D performs best. This suggest

that A∗
L,D is able to compensate for an inaccurately estimated noise level, while ERM-FBP

has problems in reconstructing target functions very different from the training samples.
For illustration, Figure 8 shows the different reconstructions of the modified Shepp-Logan

phantom from noisy Radon data with pnoise = 0.1 andNφ = 360. AlthoughA∗
L,D performs best

in terms of MSE and SSIM, we observe that while suppressing the noise very well, it smooths
out fine details in the reconstruction. As opposed to this, Âε

L,D seems to provide a decent
compromise between noise reduction and detail reconstruction, underpinning the potential of
alternative denoising techniques for the noisy Radon samples gεD(i, j) in the definition of Aε

L,D.

5.3. 2DeteCT. In our third and last set of numerical experiments, we evaluate the per-
formance of the different filters on realistic Radon data. To this end, we make use of the
2DeteCT dataset [28] consisting of real X-ray CT measurements in three acquisition modes.
Here, we focus on mode 1 yielding noisy low-dose fan-beam Radon data of slices of various test
samples that produce similar image features as exhibited in medical abdominal CT scans. In
addition to the 5000 slices of raw projection data, the dataset provides target reconstructions
that serve as ground truth and were computed via an iterative reconstruction scheme to solve
a non-negative least squares problem based on Nesterov accelerated gradient descent.

In our experiments, we first transform the provided fan-beam data into a parallel scan-
ning geometry, which is needed for applying the discrete FBP reconstruction formula (5.1).
Thereon, we subsample the sinograms with factor 2 in both the radial and angular variable,
which serves as basis for the FBP reconstructions on an equidistant grid of 1024×1024 pixels.

Exemplary reconstructions are depicted in Figure 9, where we use the same filters as in our
previous experiments. Note, however, that in this setting our optimized filter A∗

L,D cannot
be used as noise-free Radon data is not available. Also the ERM-FBP method from [25]
cannot be applied due to the lack of training data consisting of noise-free sinograms and noise
samples. For the other filters, involved parameters were optimized w.r.t. the mean MSE of
the first 50 slices of the dataset. For the Hamming filter, the optimal parameter is β = 1 so
that it agrees with the Ram-Lak filter. For Aε

L,D, we use ε = 0.045 and for Âε
L,D the optimal

choice is ε = 0.032.
Visually, all filters yield comparable results that are close to the 2DeteCT target recon-

struction, which is shown in Figure 9 (a). However, our filters Aε
L,D and Âε

L,D seem to produce
reconstruction with the best noise reduction. Also in terms of MSE, our filters show the best
performance with 9.0792 · 10−6 for Aε

L,D and 9.1616 · 10−6 for Âε
L,D. The next best perfor-

mance is achieved by the Shepp-Logan filter with an MSE of 9.1803 · 10−6, followed by the
Cosine filter with 9.5116 · 10−6 and the MR-FBPGM method with 9.8905 · 10−6. The worst
performance is achieved by the Ram-Lak filter with an MSE of 1.0703 · 10−5, followed by
the SIRT-FBP method with 1.0742 · 10−5 and lastly the MR-FBP method with an error of
1.2231 · 10−5.

Remarkably, although the measurement noise is not expected to be Gaussian, our simple
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Figure 9. Reconstructions of 2DeteCT slice 1942 (mode 1).

workaround Aε
L,D performs best, closely followed by Âε

L,D, which are explicitly designed for

Gaussian noise. We expect that the performance of Âε
L,D can be further improved by utilizing

a denoising scheme specifically tailored to the true noise in the Radon measurements.

6. Discussion and Outlook. This work focuses on improving the reconstruction quality
of the approximate filtered back projection reconstruction f εL in computerized tomography by
optimizing the applied low-pass filter AL with bandwidth L > 0. The definition of our filter
function is motivated by investigations of the noise behaviour of measured CT data, resulting
in an approximate Gaussian white noise model. Based on this, our proposed filter minimizes
the expected squared error E(∥f εL − f∥2L2(R2)) given infinite noisy measurement data with

noiselevel ε > 0 for a fixed target attenuation function f . Our resulting filter A∗
L depends on
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the noise approximation ha, noiselevel ε and Radon data Rf . We extend this filter to handle
finitely many measurements corrupted by standard discrete additive Gaussian white noise in
a parallel scanning geometry. The discretized filter A∗

L,D then depends on the variance of the
discrete Gaussian white noise, the discretization parameters and the true Radon data Rf of
the target function f . To circumvent the dependency onRf , which is rarely known in practice,
we propose two adaptations. The first replaces Rf by the measurements gεD, resulting in the

filter Aε
L,D. The second replaces Rf by Wiener filtered data ĝεD, resulting in the filter Âε

L,D.
In addition to our theoretical investigations, we conduct extensive numerical experiments

to evaluate the performance of our optimized filter function and its adaptations compared to
both standard and proposed filters from the literature. These experiments are performed on
the conventional Shepp-Logan phantom, a modified Shepp-Logan phantom to examine the
impact of underestimating noise, and the 2DeteCT dataset to test the reconstruction quality
for real X-ray CT measurements. The results reveal that our proposed filter functions A∗

L,D

and Âε
L,D significantly surpass all dataset-independent filter functions in terms of MSE and

SSIM and yield reconstruction qualities comparable to the dataset-dependent ERM-FBP filter.
Moreover, our proposed filters are easy to implement, similar to standard filter functions, thus
providing an out-of-the-box solution with theoretical justification. Consequently, our filters
bridge the gap in the literature between filters without closed-form representation – requiring
iterative schemes in advance or minimization problems for each measurement – and filters
requiring a training dataset, which is often challenging to obtain in practical applications.

We observe that our adaptation Âε
L,D shows promising results in particular for the real

2DeteCT data, where A∗
L,D is not applicable, and in scenarios with inaccurate noise level

estimation, offering a good balance between noise reduction and the reconstruction of finer
details. However, our chosen denoising technique for calculating Âε

L,D might not be optimal for
real-world data. Therefore, we propose exploring different denoising strategies in future works,
where data-driven approaches seem promising, as they can learn the true noise distribution
from the measured data. Besides using denoised measured data, one could also employ deep
learning to overcome the dependence of the true Radon data Rf . This approach also allows
for including penalty terms in the loss function to incorporate prior knowledge. Beyond these
natural adaptations of our proposed filters, future work could also build on our theoretical
investigations and modify the underlying minimization problem by, for instance, changing the
loss function, adding additional penalty terms, or directly optimizing in the discrete setting.

In summary, our analytical derivations provide a solid foundation for future investigations,
where we see particular potential in combining our theoretical results with neural networks
to overcome the dependence of the filter on the target function and further improve the
reconstruction quality.
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Journal of Probability, 25 (2020), pp. 1–38, https://doi.org/10.1214/20-EJP554.

[2] Z. A. Balogh and B. Janos Kis, Comparison of CT noise reduction performances with deep learning-
based, conventional, and combined denoising algorithms, Medical Engineering & Physics, 109 (2022),
p. 103897, https://doi.org/10.1016/j.medengphy.2022.103897.

https://doi.org/10.1214/20-EJP554
https://doi.org/10.1016/j.medengphy.2022.103897


OPTIMIZED FILTER FUNCTIONS FOR FILTERED BACK PROJECTION RECONSTRUCTIONS 33

[3] M. Beckmann and A. Iske, Error estimates for filtered back projection, in IEEE International Confer-
ence on Sampling Theory and Applications (SampTA), 2015, pp. 553–557, https://doi.org/10.1109/
SAMPTA.2015.7148952.

[4] M. Beckmann and A. Iske, Error estimates and convergence rates for filtered back projection, Mathe-
matics of Computation, 88 (2019), pp. 801–835, https://doi.org/10.1090/mcom/3343.

[5] M. Beckmann and A. Iske, Saturation rates of filtered back projection approximations, Calcolo, 57
(2020), p. 12, https://doi.org/10.1007/s10092-020-00360-y.

[6] M. Beckmann, P. Maass, and J. Nickel, Error analysis for filtered back projection reconstructions in
Besov spaces, Inverse Problems, 37 (2021), p. 014002, https://doi.org/10.1088/1361-6420/aba5ee.
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